
A Riemannian perspective on

matrix recovery and

constrained optimization

Florentin Goyens

Oriel College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2021

Acknowledgements

My DPhil has been an incredibly rich experience, where I have learned a lot and grown

as a researcher and as a person. I can truly say that I have been privileged to work

with nothing but talented and kind-hearted people, to whom I would like to express my

gratitude. First of all, I would like to thank my supervisors, Coralia Cartis and Armin

Eftekhari.

Coralia, I am extremely grateful for all your energy, your kindness and your dedication

to me during these years. You have given me the freedom to experiment and always

trusted my ideas, while keeping me on the right track. Thank you for these wonderful

years, it was a pleasure to work with you.

Armin, you welcomed me with open arms at the Turing at the start of my DPhil.

Thank you for sharing with me your passion for mathematics, your motivation and your

sense of hard work.

I would also like to thank some collaborators. To Stéphane Chrétien, thank you for

your interest in my work, your endless creativity and enthusiasm. Thank you to Nicolas

Boumal, your dynamism made every meeting enjoyable and I learned a lot from your

expertise.

I would also like to thank Estelle Massart, for some very helpful discussions. To all

the researchers and students in the numerical analysis group in Oxford, it was a pleasure

to work alongside you everyday. I will surely miss the Thursday lunches at Balliol college.

Additionally, I should thank my family, friends and most of all Louise, who has provided

an incredible support during these years. I also gratefully acknowledge the Alan Turing

Institute for funding my research and allowing me to travel to conferences.

2

Abstract

Nonlinear matrix recovery is an emerging paradigm in which specific classes of high-

rank matrices can be recovered from an underdetermined linear system of measurements.

In particular, we consider matrices whose columns, seen as data points, belong to an

algebraic variety, namely, a set defined by finitely many polynomial equations. The

nonlinear structure is exploited using an appropriately chosen feature map, which induces

a low-rank structure in the feature space, thus allowing recovery of the original (high-

rank) matrix. The same framework is applicable to matrices whose columns are divided

in clusters, so that we can address clustering tasks with missing entries.

We formulate the rank minimization of the feature matrix as the minimization of a

smooth cost function on a Riemannian manifold, which then allows us to employ the

theoretically rigorous Riemannian optimization framework, that calls on differential ge-

ometry tools to construct feasible iterative algorithms on specific Riemannian manifolds.

In particular, we show the potential benefits of using second-order algorithmic variants —

instead of first-order ones — as they are able to achieve recovery of the original data with

high accuracy. We additionally develop an alternating minimization method to solve the

recovery problem, for which we give convergence and complexity guarantees.

Considering algebraic varieties also leads us to propose a new approach for the denois-

ing of point clouds that approximately fit such structures, as well as for their registration,

namely, the task of estimating a transformation which overlaps two point clouds repre-

senting the same shape in different coordinate systems.

Finally, we consider general optimization problems with smooth equality constraints.

Due to the challenge of achieving feasibility for generic nonlinear equality constraints,

we must depart from the Riemannian framework and we propose an infeasible algorithm

which minimizes a smooth penalty function, known as Fletcher’s augmented Lagrangian.

We provide optimal worst-case bounds on the number of iterations that are required to

find an approximate first- and second-order critical point.

3

Contents

1 Introduction 9

2 Riemannian optimization 16

2.1 Charts and manifolds . 16

2.2 Tangent vectors and differential map . 18

2.2.1 Embedded submanifolds . 20

2.2.2 Quotient manifolds . 20

2.3 Riemannian structure and gradients . 22

2.3.1 Riemannian submanifolds . 23

2.3.2 Riemannian quotient manifolds 24

2.4 Connections and Hessians . 25

2.4.1 Riemannian submanifolds . 27

2.4.2 Riemannian quotient manifolds 27

2.5 Optimality conditions . 28

2.6 Retractions . 29

2.7 Parallel transport . 30

2.8 Algorithms and implementations . 31

2.8.1 Riemannian gradient descent . 31

2.8.2 Riemannian trust-region . 32

2.8.3 Riemannian optimization toolboxes: Manopt and PyManopt . . . 35

2.9 Manifolds of interest . 36

2.9.1 Euclidean spaces . 37

2.9.2 Affine subspaces . 37

2.9.3 The Stiefel manifold: orthonormal matrices 38

2.9.4 The orthogonal group and rotation matrices 40

2.9.5 The Grassmann manifold . 41

2.9.6 Manifolds defined by h(x) = 0 . 43

4

3 Matrix recovery problems 46

3.1 Low-rank matrix recovery . 46

3.2 Nonlinear matrix recovery . 52

3.2.1 Problem description and feature map 52

3.2.2 The algebraic variety model . 53

3.2.3 Union of subspaces . 55

3.2.4 Clustering and the Gaussian kernel 57

3.2.5 Related work . 58

4 Nonlinear matrix recovery on the Grassmann manifold 62

4.1 Nonlinear matrix recovery as an optimization problem 64

4.1.1 Kernel representation of the features 65

4.1.2 Derivatives of the cost function 66

4.2 Riemannian optimization algorithms . 67

4.3 Alternating minimization algorithms . 69

4.4 Convergence of the alternating minimization algorithm 72

4.4.1 Global convergence results . 73

4.4.2 Convergence of the iterates using the Kurdyka-Lojasiewicz property 77

4.5 Discussion of assumptions in convergence results 85

4.6 Numerical experiments . 88

4.6.1 Implementation of the algorithms 88

4.6.2 Test problems . 89

4.6.3 Testing methodology . 89

4.6.4 Numerical results . 90

4.7 Conclusions . 98

5 Applications of the algebraic variety model 99

5.1 Denoising an algebraic variety . 100

5.1.1 Problem description . 101

5.1.2 The feature space and the monomial features 102

5.1.3 Denoising as an optimization problem 102

5.1.4 Statistical error estimation . 105

5.1.5 Numerical results . 108

5.2 Registration . 112

5.2.1 Problem set up . 116

5.2.2 Registration as an optimization problem 117

5.2.3 Numerical results for noiseless registration 119

5.2.4 Noisy registration . 121

5

5.2.5 Numerical results for noisy registration 122

5.3 Conclusions . 126

6 Equality constrained optimization 128

6.1 Introduction . 129

6.1.1 Assumptions . 129

6.1.2 Layered manifolds . 130

6.1.3 Optimality conditions . 132

6.2 Related work . 133

6.3 Properties of Fletcher’s augmented Lagrangian 138

6.3.1 Approximate first-order criticality 141

6.3.2 Approximate second-order criticality 143

6.3.3 Property of the region C . 146

6.4 Gradient-Eigenstep algorithm . 148

6.4.1 Algorithm . 148

6.4.2 First-order steps . 150

6.4.3 Second-order steps . 152

6.4.4 Worst-case global complexity . 154

6.5 Estimating the penalty parameter . 156

6.6 Conclusions . 160

Bibliography 162

A Proofs 176

A.1 Proofs for Chapter 4 . 176

A.2 Proofs for Chapter 6 . 179

6

Notation and symbols

Matrices

σmin(A) The smallest singular value of the matrix A
σmax(A) The largest singular value of the matrix A
σi(A) The ith singular value of the matrix A, in decreasing order
λmin(A) The smallest eigenvalue of the matrix A, in magnitude
λmax(A) The largest eigenvalue of the matrix A, in magnitude

‖A‖F The Frobenius norm of the matrix A, ‖A‖F =
√
A>A

A � 0 Positive semidefinite matrix A
In Identity matrix of size n
1n×s Matrix of all ones of size n× s
skew(A) (A− A>)/2, the skew-symmetric part of a matrix A
sym(A) (A+ A>)/2, the symmetric part of a matrix A
null(A) The null space of the matrix A

Sets

M A Riemannian manifold
E A Euclidean space
St(n, r) The Stiefel manifold {X ∈ Rn×r : X>X = Ir}
O(n) The orthogonal group {X ∈ Rn×n : X>X = In}
SO(n) The special orthogonal group {X ∈ Rn×n : X>X = In, det(X) = 1}
Grass(n, r) The Grassmann manifold of linear subspaces of dimension r in Rn

Sym(p) The set of symmetric matrices of size p

Tools on manifolds

F(M) The set of real-valued functions on the manifold M
X(M) The set of vector fields on the manifold M
TxM Tangent space at x to the manifold M
Projx Orthogonal projection onto TxM
Rx Retraction at x

7

Functions

Id Identity map
∇f(x) Classical gradient of f , seen as a function in a Euclidean space
gradf(x) Riemannian gradient of f , with respect to the manifold f is defined on
∇2f(x) Classical Hessian of f , seen as a function in a Euclidean space
Hessf(x) Riemannian Hessian of f
C∞ The class of infinitely differentiable functions

Abreviations

PCA Principal component analysis
SURE Stein’s unbiased risk estimator
RTR Riemannian trust-region
SVD Singular value decomposition

8

Chapter 1

Introduction

This thesis revolves around two core concepts: recovery problems involving data sets of

low intrinsic dimension and optimization over smooth manifolds. These two problems are

tightly connected as we are able to phrase recovery problems as the minimization of cost

functions over smooth manifolds, thus allowing us to use the powerful set of Riemannian

optimization methods to solve them.

With the emergence of data science and the desire to extract meaningful information

from the ever-increasing amount of collected data, new mathematical challenges arise

constantly. One of which is the prevalent matrix completion problem, with applications

in collaborative filtering, system identification and perhaps most notably in recommender

systems. Given a subset of the entries of a matrix M , the goal is to “complete” the ma-

trix in a meaningful way. The rows of the matrix typically represent products and the

columns represent customers. Each available entry represents the rating of a customer

to a specific product and recommendations are based on the completed matrix, as cus-

tomers are recommended products for which the completion estimates a good rating.

Traditionally, the matrix completion problem has been tackled under the assumption

that a low-rank matrix completes the observed data, which means that the profile of any

customer can be expressed as a linear combination of a few singular profiles. Low-rank

matrix completion is a well-developed, yet still active, subject which is summarized in

surveys such as (Davenport and Romberg, 2016; Nguyen et al., 2019). Successful ap-

proaches include optimization methods where rank constraints are formulated as specific

smooth manifolds (Vandereycken, 2013; Boumal and Absil, 2015).

However, some data sets are poorly approximated by low-rank models. This is the

case of nonlinear surfaces such as certain three-dimensional scans encountered in medical

imaging. As a mathematical model representing nonlinear surfaces, we consider problems

where the data is represented by an algebraic variety, namely, a set defined by finitely

many polynomial equations. In particular, when the data belongs to a finite union of

subspaces, it is also represented by an algebraic variety. Data sets divided into clusters

9

constitute another example where low-rank models are of limited use, which we also

investigate. Such data sets, though they may be intrinsically low-dimensional in some

way, feature a complex relationship between the data points which includes nonlinearities.

These examples abound in computer vision and machine learning applications (Bishop,

2006; Xu and Wunsch, 2008; Forsyth and Ponce, 2011; Shalev-Shwartz and Ben-David,

2014). It is therefore natural to investigate whether matrix completion techniques can be

adapted to particular classes of high-rank matrices.

An approach was recently proposed, which recovers a high-rank matrix M from linear

measurements on the condition that suitable features of the columns of M are linearly

dependent (Ongie et al., 2017; Fan and Chow, 2018). That is, the approach relies on the

existence of a nonlinear function Φ, a feature map, such that Φ(M) is low-rank. This

approach, known as nonlinear matrix recovery, lifts the problem to a higher-dimensional

feature space, where a low-rank structure of the lifted data matrix can be found. The

recovery problem comes down to the rank minimization of the feature map Φ while

satisfying the linear measurements on the matrix M . The use of a feature map, which

may be represented by a kernel, is a well-known technique in machine learning, which

appears in methods such as kernel Principal Component Analysis (PCA) (Schölkopf et al.,

1997). Kernel PCA classifies data points into several categories which are not linearly

separable in the original space but become linearly separable in the feature space. Kernel

PCA has also proved efficient in image denoising and in detecting patterns in data sets

which do not have a linear structure (Hoffmann, 2007). The introduction of a feature

map for matrix completion poses several computational challenges, as the dimension of

the problem increases dramatically, and low-rank matrix completion techniques must be

adapted to the nonlinear feature map Φ, in order to estimate M . In this thesis, we show

how nonlinear matrix recovery can be phrased as a nonconvex optimization problem over

a smooth manifold, thus adapting low-rank matrix recovery techniques to the nonlinear

case.

Nonlinear recovery questions and algebraic varieties also appear jointly in two other

applications: the denoising of point clouds and their registration, which consists in es-

timating a transformation that overlaps two point clouds representing the same object.

This problem is commonly encountered in medical imaging applications, amongst others.

CT scans (computed tomography) for dental care is a technology that measures a tooth

and produces a three dimensional point cloud of its surface. Scans taken months or years

apart can be of great help to diagnose tooth decay. It is therefore desirable to have an

automated way to overlap two scans of the same dental records which may have been

taken from different angles. CT scans provide point clouds of up to several million points

which can help estimate the surface of a tooth. These scans may also contain outliers,

10

which should be handled in a preprocessing phase before the registration. Point cloud

registration is a vast and active topic of research where approaches vary depending on the

type of transformation that is required for the point clouds to overlap (Goshtasby, 2005;

Van Kaick et al., 2011; Tam et al., 2013; Chaudhury et al., 2015; Huang et al., 2021).

The approach adopted here is to assume that the sampled point clouds belong, exactly or

approximately, to an algebraic variety. The estimation of a transformation such that two

algebraic varieties align is formulated as an optimization problem involving the group of

rotations in Rn, which also has a manifold structure that we can exploit.

The problems considered in this thesis naturally involve the minimization of a cost

function subject to smooth constraints, such as fixed-rank manifolds and the special or-

thogonal group of rotations. We solve these problems using the Riemannian optimization

framework, whose central idea is to treat the problem as the unconstrained minimization

of a function whose domain of definition is the feasible set. In this way, the constraint

is implicitly part of the problem definition. Riemannian optimization uses differential

geometry tools to generalize to manifolds classical methods from unconstrained opti-

mization, such as gradient descent and trust-regions. The Riemannian counterparts of

these methods iteratively travel along the manifold and produce a feasible sequence of

iterates. Each step finds a new direction based on a local linearization of the manifold,

namely, the tangent space. The appeal of formulating optimization problems on man-

ifolds resides in the fact that these methods are able to keep the computational costs

proportional to the intrinsic dimension of the manifold, and avoid computations in the

ambient space. Riemannian optimization forms the backbone of the algorithms used in

this thesis.

Riemannian optimization methods, though not widespread, have steadily gained in

popularity since the 1990s, when the first practical algorithms were introduced (Edelman

et al., 1998). A great contributor to the development of the field is the textbook (Absil

et al., 2008), which lays out the foundations to define optimization methods on Rie-

mannian manifolds. The book also conveys the idea that Riemannian optimization is

naturally related to a number of classical problems in numerical analysis, such as the

computation of eigenvectors and low-rank approximations. A more recent introduction

to Riemannian optimization can be found in (Boumal, 2020), without prerequisites in

differential geometry.

Smooth manifolds are typically nonconvex sets; thus the ensuing optimization prob-

lems may be difficult to solve in general. One is commonly only guaranteed to find a

local solution, that may not be the global minimizer of the problem. Therefore, it is

11

important to distinguish the output of an algorithm from the desired solution. Never-

theless, some favourable circumstances may allow the calculation of global minimizers

of a nonconvex problem. For example, a particularly good initialization may be avail-

able, with the function having a convex behaviour near the desired solution. It has

been shown that some nonconvex problems do not have spurious local minima and that

all saddle points can be escaped using a negative curvature direction prescribed by the

second derivatives. Finally, it is sometimes possible to show that a particular convex re-

laxation of the problem is tight, which means that the global minimizer of the relaxation

is also the global minimizer of the nonconvex problem. A classical example of a non-

convex problem for which it is possible to find the global minimizer is the computation

of eigenvalues, a fact that we exploit in this thesis. The study of nonconvex problems

for which it is possible to find a global minimum using local optimization methods is a

very active topic of research. These problems appear in a variety of settings, such as

low-rank matrix completion (Candes and Plan, 2011; Ge et al., 2016; Bhojanapalli et al.,

2016; Uschmajew and Vandereycken, 2018; Li and Tang, 2017); dictionary learning (Sun

et al., 2017); phase retrieval (Sun et al., 2015, 2018); phase synchronization (Bandeira

et al., 2017; Boumal, 2016), principal component analysis (Hauser et al., 2018) and the

Burer-Monteiro factorization of semidefinite programs (Cifuentes, 2019; Boumal et al.,

2020).

The traditional performance analysis of optimization methods has addressed the local

convergence rate, that is, the speed at which the iterative process asymptotically con-

verges towards a minimizer. Methods which rely on first derivatives of the problem’s

function typically converge at best at a linear rate. Methods which use second-order

derivatives or their approximation may hope to converge superlinearly or quadratically,

which in practice, ensures convergence in a small number of iterations. However, these

results do not give any indication of the behaviour of the method in the early itera-

tions, notably in the case of a poor initial guess. Moreover, optimization algorithms

aim to find points which satisfy approximate necessary optimality conditions involving

the derivatives of the cost function, so that they may return in finite time. This is not

taken into account in the analysis of the asymptotic behaviour. Therefore, an important

task in safeguarding the performance of these methods is to give worst-case estimates

on the number of iterations that a method requires to satisfy an approximate criticality

condition from an arbitrary starting point. The study of global (worst-case) complex-

ity analysis of optimization methods is a recent perspective which we contribute to in

this thesis. For unconstrained nonconvex problems, the worst-case complexity of classi-

12

cal methods such as gradient descent, Newton’s method and regularization variants was

derived in (Nesterov, 2004, 2018; Cartis et al., 2010, 2011, 2012).

As most of the optimization problems that appear in this manuscript are constrained

problems, we investigate the worst-case complexity of algorithms for constrained opti-

mization. Remarkably, Riemannian optimization methods achieve the same complexity

bounds as their unconstrained counterparts (Boumal et al., 2019; Agarwal et al., 2018).

However, Riemannian methods can only be used for constraints for which it is straight-

forward to generate a feasible point and maintain a feasible sequence of iterates using

projection-like mappings to the feasible set. For many constrained problems, as smooth

as they may be, Riemannian methods are therefore not applicable. In those cases, tra-

ditional infeasible methods must be used and the study of their worst-case complexity is

also of interest (Cartis et al., 2015, 2019). An upcoming research monograph summarizes

these efforts for the unconstrained and constrained cases (Cartis et al., 2022). Infeasible

methods are initialized in the ambient space and attempt to converge towards the feasible

set by penalizing infeasibility in addition to minimizing the cost function.

The study of nonlinear constrained optimization problems goes back a long way with

the introduction of penalty methods in the 1960s and Augmented Lagrangian methods

in the 1970s (Bertsekas, 1982). Augmented Lagrangian methods are still widely used

today in optimization software, which has prompted recent research in the study of their

worst-case complexity (Grapiglia and xiang Yuan, 2019; Xie and Wright, 2019; Birgin

and Martnez, 2019).

In this thesis, we consider problems with smooth equality constraints which require

the use of infeasible methods. We devote some attention to the definition of an ap-

proximate second-order critical point in the presence of equality constraints. We show

worst-case complexity bounds for finding such points when using an algorithm based

on the minimization of a smooth penalty function known as Fletcher’s augmented La-

grangian (Fletcher, 1970). The rates are sharp as they match the best bounds available

in the unconstrained setting and our analysis draws on concepts from Riemannian opti-

mization.

Outline of the thesis

Chapters 2 and 3 provide the background material that the research presented in this

thesis builds upon. Chapter 2 is concerned with Riemannian optimization. It defines

the tools from differential geometry which are used to develop optimization methods on

manifolds. Optimality conditions for optimization problems defined on smooth manifolds

are also presented. We further outline the particular manifolds as well as algorithms that

13

appear throughout the thesis. Chapter 3 surveys the existing literature for both low-

rank matrix recovery and nonlinear matrix recovery. The low-rank section offers some

background, as nonlinear matrix recovery is, in part, an extension of low-rank matrix

recovery to particular classes of high-rank matrices. The section on nonlinear matrix

recovery is an up-to-date overview of this emerging field. We formulate the problem,

which relies on the definition of a feature map, and introduce our case studies: the

algebraic variety model, unions of subspaces and clustering, which are used in Chapters 4

and 5.

Chapter 4 presents our main contributions to the nonlinear matrix recovery area. In

addition to algebraic variety data, we introduce a new application of nonlinear matrix

recovery, namely, clustering with missing entries. We propose a formulation which is

new in the context of nonlinear matrix recovery and requires to solve an optimization

problem on the Grassmann manifold, the set of all linear subspaces of a given dimension

in Rn. We present two approaches to solve it: a Riemannian optimization algorithm and

an alternating minimization method. Both classes of algorithms have theoretical guaran-

tees. In particular, for the alternating minimization, we establish global convergence and

worst-case complexity bounds. Additionally, using the Kurdyka-Lojasiewicz property, we

show that the alternating minimization converges to a unique limit point. We provide

extensive numerical results for the recovery of unions of subspaces and clustering with

missing entries. Our methods are competitive with existing approaches and, in particu-

lar, high accuracy is achieved in the recovery using Riemannian second-order methods.

The content of this chapter is presented in (Goyens et al., 2021) and a preliminary part

appears in the conference proceedings (Goyens et al., 2019).

In Chapter 5 we investigate two other estimation problems which use the algebraic va-

riety model. Both of these problems are based on a concept central to Chapter 4, the rank

minimization of the monomial features. This chapter is a collaboration with Stéphane

Chrétien (National Physics Laboratory; now at Lyon 2). Section 5.1 is concerned with the

problem of denoising a point cloud using an approximation by an algebraic variety. We

include an analysis of the estimation error, using Stein’s unbiased risk estimator (SURE).

The majority of Section 5.1 has been presented in a conference proceedings (Goyens et al.,

2020). It serves as an important building block for the next section which deals with the

registration problem. In Section 5.2, we estimate the transformation between two noisy

data sets representing the same algebraic variety up to a change of coordinates. The prob-

lem is phrased as optimization over the special orthogonal group SO(n). We validate our

approach on synthetic problems and real data such as dental scans.

Chapter 6 is dedicated to optimization with smooth equality constraints. In collabo-

ration with Nicolas Boumal, we consider well-behaved equality constraints which require

14

the use of infeasible methods and we propose first- and second-order approximate criti-

cality conditions which have a natural geometric interpretation. We consider a penalty

function known as Fletcher’s Augmented Lagrangian and prove that approximately crit-

ical points of the penalty function coincide with approximately critical points of the

constrained problem. We present an algorithm to minimize Fletcher’s augmented La-

grangian, which has first- and second-order variants. We then establish sharp worst-case

bounds on the number of iterations that the algorithm takes to satisfy our first- and

second-order approximate criticality conditions.

15

Chapter 2

Riemannian optimization

This chapter gives an overview of Riemannian optimization, the task of minimizing a func-

tion defined over a smooth manifold, a recurring theme in this thesis. We define smooth

manifolds and the choice of a Riemannian structure. We describe the main concepts from

differential geometry that play a role in Riemannian optimization algorithms. These in-

clude tangent vectors, the Riemannian gradient and Riemannian Hessian of a real-valued

function defined on a Riemannian manifold. The retraction map, which allows to travel

along the manifold in a direction prescribed by a tangent vector, is an instrumental tool

to maintain feasibility across the iterations. Optimality conditions for optimization on

manifolds are also addressed. We define two classical minimization algorithms on Rie-

mannian manifolds: Riemannian gradient descent and Riemannian trust-region. We end

the chapter with the description of a number of specific manifolds which appear through-

out the thesis. All the notions presented here are standard and we follow closely the

presentation in (Absil et al., 2008; Boumal, 2014, 2020).

2.1 Charts and manifolds

A smooth manifold is a set that can locally be identified with an open set in Rn. This

identification is called a chart. A collection of compatible charts which cover the set is

called an atlas for that set. The set together with the atlas form a manifold.

Definition 2.1 (charts). Let M be a set. A chart of M is a pair (U,ϕ) where U ⊂ M

and ϕ is a bijection between U and an open set of Rn. U is the chart’s domain and n

is the chart’s dimension. Given x ∈ U , the elements of ϕ(x) = (ϕ(x)1, ϕ(x)2, . . . , ϕ(x)n)

are the coordinates of the point x ∈ U in the chart (U,ϕ).

Definition 2.2 (compatible charts). Two charts (U,ϕ) and (V, ψ) of M , are smoothly

compatible if they have the same dimension n and either U ∩ V = ∅ or U ∩ V 6= ∅ and

• ϕ(U ∩ V) is an open set of Rn

16

• ψ(U ∩ V) is an open set of Rn

• ψ ◦ ϕ−1 : ϕ(U ∩ V) → ψ(U ∩ V) is a smooth diffeomorphism (a smooth invertible

function with smooth inverse).

Definition 2.3 (atlas). A set A = {(Ui, ϕi), i ∈ I} of pairwise smoothly compatible charts

such that ∪i∈IUi = M is a smooth atlas of M .

Two atlases A1 and A2 are compatible if A1∪A2 is an atlas. In other words, for every

chart (U , ϕ) in A2, the set of charts A1 ∪ {(U , ϕ)} is still an atlas. Given an atlas A,

one can generate A+, the set of all charts (U , ϕ) such that A ∪ {(U , ϕ)} is also an atlas.

It is clear that A+ is also an atlas, called the maximal atlas generated by the atlas A.

A maximal atlas of a set M is called a differentiable structure on M . A maximal atlas

defines a topology on M called the manifold topology (or atlas topology).

Definition 2.4 (manifold). A smooth (n-dimensional) manifold is a pairM = (M,A+),

where M is a set and A+ is a maximal atlas of M into Rn, such that the atlas topology

is Hausdorff and second-countable.

The requirement that the atlas topology is Hausdorff and second-countable avoids

counter-intuitive situations. For details on these (unusual) topological issues, see (Absil

et al., 2008, Section 3.1.2). For a manifoldM = (M,A+), we often useM and M inter-

changeably when the differentiable structure is clear from the context. The differentiable

structure allows to define a smooth map between two manifolds.

Definition 2.5 (smooth mapping). Let M and N be two smooth manifolds. A mapping

f : M → N is of class Ck if, for all x in M, there is a chart (U,ϕ) of M and a chart

(V, ψ) of N such that x ∈ U, f(U) ⊂ V and

ψ ◦ f ◦ ϕ−1 : ϕ(U)→ ψ(V)

is of class Ck, that is, if ψ ◦ f ◦ ϕ−1 is k times continuously differentiable. The latter is

called the local expression of f in the charts (U,ϕ) and (V, ψ). A smooth map is of class

C∞.

This definition does not depend on the choice of charts.

17

2.2 Tangent vectors and differential map

A function f : M → R is called a scalar field on M. We wish to generalize the usual

notion of directional derivative

Df(x)[ξ] = lim
t→0

f(x+ tξ)− f(x)

t

to a real-valued function defined on a manifold. One approach is to replace t 7→ (x+tξ) by

a smooth curve c onM that passes through x. The function f ◦c goes from R→ R so its

derivative is well defined in the usual sense, d
dt
f(c(t))

∣∣
t=0

. A priori, this definition depends

on the curve c. To alleviate this issue, we introduce tangent vectors as equivalence classes

of curves, as is customary in differential geometry. Consider

Cx = {c : I →M : c ∈ C1, 0 ∈ I an open interval in R, c(0) = x},

the set of differentiable curves on M that pass through x ∈ M at t = 0. We introduce

an equivalence relation on Cx. Let (U,ϕ) be a chart such that x ∈ U and let c1, c2 ∈ Cx.
The curves c1 and c2 are said to be equivalent if ϕ(c1(t)) and ϕ(c2(t)) have the same

derivative at t = 0, that is:

c1 ∼ c2 ⇔
d

dt
ϕ(c1(t))

∣∣∣∣
t=0

=
d

dt
ϕ(c2(t))

∣∣∣∣
t=0

.

The tangent space is then defined as the set of equivalence classes in Cx.

Definition 2.6. The tangent space to M at x, noted TxM, is the quotient space

TxM = Cx/∼ = {[c] : c ∈ Cx}.

Given c ∈ Cx, the equivalence class [c] is an element of TxM called a tangent vector to

M at x.

The tangent space admits a structure of vector space, as described in (Absil et al.,

2008, Section 3.5.1). This is important, as the tangent space may be viewed as a local

vector space approximation of the manifold, in the same way that the derivative of a

real-valued function provides a linear approximation of that function.

Definition 2.7. The directional derivative of a scalar field f on M at x ∈ M in the

direction ξ = [c] ∈ TxM is the scalar:

Df(x)[ξ] :=
d

dt
f(c(t))

∣∣∣∣
t=0

= (f ◦ c)′(0). (2.1)

18

The equivalence relation over Cx ensures that this definition does not depend on the

choice of c to represent the tangent vector ξ ∈ TxM. An alternative approach is to

define tangent vectors as abstract derivation objects. Let F(M) denote the set of smooth

real-valued functions on M. A derivation at x ∈ M is a mapping ξ : F(M) → R such

that

1. ξ(af + bg) = aξ(f) + bξ(g), and

2. ξ(fg) = ξ(f)g(x) + f(x)ξ(g) for all f, g ∈ F(M) and a, b ∈ R.

The notions of tangent vectors as derivations and equivalence classes of curves are equiva-

lent in the following sense: given a smooth curve c onM with c(0) = x, the mapping (2.1)

is a derivation at x ∈M; and given a derivation ξ at x, there exists a curve c onM with

c(0) = x such that ξ is given by (2.1). The curve c is said to realize the tangent vector ξ.

Definition 2.8 (tangent bundle). Let M be a smooth manifold. The tangent bundle,

noted TM, is the set:

TM =
∐
x∈M

TxM,

where
∐

stands for a disjoint union.

Definition 2.9 (vector field). A vector field X is a smooth mapping from M to TM
that assigns to each point x ∈ M a tangent vector Xx ∈ TxM. The set of vector fields

on M is denoted as X(M).

Let F : M → N be a smooth mapping between two manifolds (Definition 2.5) and

let ξ be a tangent vector at x ∈ M. It can be shown that the mapping DF (x)[ξ] from

F(N) to R defined by

(DF (x)[ξ])f := ξ(f ◦ F)

is a tangent vector to N at F (x). The tangent vector is realized by F ◦ c, where c is any

curve that realizes ξ. The mapping

DF (x) : TxM→ TF (x)N : DF (x)[ξ] (2.2)

is a linear mapping called the differential (or tangent map) of F at x.

19

2.2.1 Embedded submanifolds

We introduce embedded submanifolds as a way to connect two manifolds in situations

where one is a subset of the other. This is useful as many manifolds encountered in

practice are embedded in a matrix space such as Rn×s. Let (M,A+) and (M,B+) be

manifolds such thatM⊂M. If the manifold topology onM coincides with its subspace

topology induced from M, we say that M is an embedded submanifold of M, and M is

called the embedding space. Importantly,M admits at most one differentiable structure

which makes it an embedded submanifold of M. In that case, a smooth map on M,

when restricted to M, is also a smooth map. When the set M is a Euclidean space,

there is a convenient definition of submanifolds in terms of characteristic functions.

Theorem 2.1. Let E be a Euclidean space of dimension n and M be a subset of E.

Statements (1) and (2) below are equivalent:

1. M is a smooth embedded manifold of E of dimension n−m;

2. For all x ∈ M, there is an open set V of E containing x and a smooth function

h : V → Rm such that the differential Dh(x) : E → Rm has rank m and V ∩M =

h−1(0).

Furthermore, the tangent space at x is given by TxM = ker Dh(x), the null space of

Dh(x).

2.2.2 Quotient manifolds

LetM be a manifold with an equivalence relation ∼ on that set. Let x ∈M and consider

the equivalence class,

[x̄] =
{
y ∈M : ȳ ∼ x

}
.

The equivalence relation induces a quotient space, that is, the set of equivalence classes

M =M/∼ =
{

[x] : x ∈M
}
.

The map π : M→M : π(x) = [x] is called the canonical projection. Clearly, π(x) = π(y)

if and only if x ∼ y. Hence, we have [x] = π−1(x) where x = π(x) ∈ M. We use π(x)

to denote [x] viewed as a point on M and π−1(x) with x = π(x) to denote [x] viewed as

a subset of M. The space M may in general admit several smooth manifold structures.

Under certain conditions, there exists a unique manifold structure on M that turns it

into a quotient manifold of M, the precise definition of which can be found in (Absil

et al., 2008, Section 3.4). The manifold M is called the total space of the quotient M.

Importantly, equivalence classes [x] ⊂M are embedded submanifolds ofM. In numerical

20

algorithms, a class x ∈ M is represented on a computer by some x ∈ M, an arbitrary

member of the class.

Consider a scalar field f : M → R and some x = [x] ∈ M. A tangent vector,

ξ ∈ TxM, though well defined as the tangent vector to an equivalence class, is impractical

to represent. Fortunately, it is conveniently represented by ξ ∈ TxM, a tangent vector

to M at x. It turns out that ξ will have the same properties as ξ in terms of directional

derivatives. Given ξ ∈ TxM, we wish to find ξ ∈ TxM such that, for all f : M→ R,

Df(x)[ξ] = Df(x)[ξ]

where f = f ◦ π : M → R. Unfortunately, this representation is not unique. This is

in part due to the fact that the dimension of TxM is greater than that of TxM. We

need to use the quotient manifold structure to identify a unique vector ξ to represent

ξ. Recall that equivalence classes π−1(x) = [x] are embedded submanifolds of M. The

tangent space to the submanifold π−1(x) = [x] at x ∈ M, namely, Tx (π−1(x)), is called

the vertical space at x:

Vx := Tx

(
π−1(x)

)
⊂ TxM,

where π−1(x) is viewed as an embedded submanifold ofM and the inclusion Tx (π−1(x)) ⊂
TxM comes as a consequence.

A mapping H that assigns to each element x of M a subspace Hx of TxM such that

Vx ⊕ Hx = TxM is called a horizontal distribution on M, where ⊕ denotes the direct

sum of two subspaces. The complementary space Hx ⊂ TxM is called the horizontal

space at x. Intuitively, the tangent space TxM is composed of the vertical space Vx,

whose vectors point in directions that “remain” on the submanifold [x] ⊂ M where

f is constant, and the horizontal space Hx whose vectors point “outside” of the class

[x] ⊂ M, in directions where f varies ; as illustrated in Figure 2.1. Let M be endowed

with a horizontal distribution, then there exists one and only one element ξ ∈ Hx, called

the horizontal lift of ξ at x, that satisfies Dπ(x)[ξ] = ξ. As a consequence, for all scalar

fields f : M→ R,

Df(x)[ξ] = Df(π(x))
[
Dπ(x)[ξ]

]
= Df(x)[ξ].

The possibly ambiguity in the choice of an horizontal distribution is not usually of any

practical concern, as the Riemannian metric introduced in the next section naturally

selects a suitable horizontal distribution. The horizontal distribution that stems from the

choice of a Riemannian metric satisfies the property that a vector field V on a quotient

manifoldM is smooth if and only if its horizontal lift V is smooth onM (Boumal, 2020,

Thm. 9.26).

21

Figure 2.1: A quotient manifold (Absil et al., 2008)

2.3 Riemannian structure and gradients

In order to define optimization algorithms on manifolds, it is necessary to have a notion

of length of a tangent vector. This is addressed by considering Riemannian manifolds,

whose tangent spaces are associated with a smoothly varying inner product.

Definition 2.10. Let M be a smooth manifold and take x ∈ M. An inner product

〈·, ·〉x on TxM is a bilinear, symmetric and positive-definite form on TxM, i.e., for all

ξ, ζ, η ∈ TxM, a, b ∈ R:

• 〈aξ + bζ, η〉x = a 〈ξ, η〉x + b 〈ζ, η〉x,

• 〈ξ, ζ〉x = 〈ζ, ξ〉x, and

• 〈ξ, ξ〉x ≥ 0, with 〈ξ, ξ〉x ⇔ ξ = 0.

An inner product induces a norm on the tangent space. The norm of a tangent vector

ξ ∈ TxM is ‖ξ‖x =
√
〈ξ, ξ〉x.

A smoothly varying inner product is called a Riemannian metric and the subscript

is often omitted when no confusion is possible, 〈ξ, η〉x = 〈ξ, η〉; this also applies to the

associated norm ‖ξ‖x = ‖ξ‖.

22

Definition 2.11 (Riemannian manifold). A Riemannian manifold is a pair (M, g), where

M is a smooth manifold and g is a Riemannian metric. A Riemannian metric is a

smoothly varying inner product defined on the tangent spaces of M, that is, for each

x ∈M, gx(·, ·) = 〈·, ·〉x is an inner product on TxM.

In this definition, smoothly varying is understood in the sense that, for any vector

fields X, Y ∈ X(M) the map x 7→ 〈Xx, Yx〉 is a smooth function from M to R. A vector

space with an inner product is a particular Riemannian manifold called a Euclidean space.

When the metric is clear from context, we will often writeM to refer to the Riemannian

manifold (M, g). We introduce the Riemannian gradient of a real-valued function on a

Riemannian manifold, a notion that is central to optimization algorithms.

Definition 2.12 (gradient). Let f : M→ R be a scalar field on a Riemannian manifold

M. The (Riemannian) gradient of f at x ∈ M, written gradf(x), is defined as the

unique element of TxM that satisfies

Df(x)[ξ] = 〈gradf(x), ξ〉x for all ξ ∈ TxM.

Thus gradf : M→ TM is a vector field on M.

For scalar fields defined on Euclidean spaces, gradf is the usual gradient, denoted by

∇f . The intuition that the gradient represents the direction of steepest ascent carries

over to Riemannian manifolds. Indeed,

max
ξ∈TxM
‖ξ‖x=1

Df(x)[ξ] = ‖gradf(x)‖x ,

and the maximum is reached for ξ = gradf(x)/ ‖gradf(x)‖x.

2.3.1 Riemannian submanifolds

Let M be a Riemannian manifold. If M ⊂ M is an embedded submanifold of M, it

can be endowed with a Riemannian metric simply by restricting the metric of M to the

tangent spaces of M.

Definition 2.13 (Riemannian submanifold). Let (M, g) be a Riemannian manifold and

let (M, g) be such that M is a submanifold of M and such that g is the restriction

of g to the tangent spaces of M. More precisely, for all x ∈ M and for all tangent

vectors ξ, η ∈ TxM ⊂ TxM, the metrics g and g are compatible in the sense that

gx(ξ, η) = gx(ξ, η). Then, M is a Riemannian submanifold of M.

23

Since TxM⊂ TxM, it is natural to define the orthogonal complement of TxM with

respect to the metric g. This gives the normal space

T⊥xM =
{
ξ ∈ TxM : 〈ξ, η〉 = 0 for all η ∈ TxM

}
.

All vectors of TxM are uniquely decomposed as ξ = Projx(ξ)+Proj⊥x (ξ) where Proj : TxM→
TxM and Proj⊥ : TxM → T⊥xM are orthogonal projections. Let M be a Riemannian

submanifold of M. Consider f : M→ R and f : M→ R, its restriction to M. Then,

gradf(x) = Projx
(
gradf(x)

)
. (2.3)

Indeed, for any ξ ∈ TxM,

Df(x)[ξ] = Df(x)[ξ]

=
〈
gradf(x), ξ

〉
=
〈
Projx(gradf(x)) + Proj⊥x (gradf(x)), ξ

〉
=
〈
Projx(gradf(x)), ξ

〉
.

In particular, if the embedding manifold M is a Euclidean space (such as Rn), the

Riemannian gradient is the projection of the Euclidean gradient on the tangent space:

gradf(x) = Projx (∇f(x)) ,

where ∇ denotes the classical (Euclidean) gradient in Rn.

2.3.2 Riemannian quotient manifolds

Let (M, g) be a Riemannian manifold and let M = M/ ∼ be a quotient manifold of

M. We use the Riemannian structure on M to equip M with a Riemannian structure

as well. The Riemannian metric onM allows to single out a horizontal distribution. For

all x ∈M,

Hx := V⊥x =
{
ξ ∈ TxM : gx(ξ, η) = 0 for all η ∈ Vx

}
.

The map defined by

gx(η, ξ) := gx(ξ, η)

is a Riemannian metric on TxM if gx(ξ, η) does not depend on the choice of x to represent

x ∈M. We now explain how to compute a horizontal lift of gradf(x). Choose any scalar

field f on M such that f = f ◦ π, where π is the canonical projection. Notice that the

derivative of f along vertical vectors is zero. Indeed, for any ξ ∈ Vx,

Df(x)[ξ] = D(f ◦ π)(x)[ξ] = Df(π(x))
[
Dπ(x)[ξ]

]
= Df(x)[0] = 0.

24

As a consequence, for all x ∈M, gradf(x) ∈ Hx. This horizontal vector is the horizontal

lift of the gradient of f at x:

gradf(x) = gradf(x), (2.4)

where the left hand-side denotes the horizontal lift of gradf(x) at x. Indeed, for all

x ∈M and ξ ∈ TxM and for any x ∈ π−1(x),

gx(gradf(x), ξ) = gx

(
Dπ(x)[gradf(x)],Dπ(x)[ξ]

)
= gx

(
Dπ(x)[gradf(x)],Dπ(x)[ξ]

)
= gx

(
gradf(x), ξ

)
= Df(x)[ξ] = Df(x)[ξ].

The orthogonal projection onto the horizontal space at x is denoted by Projhx : TxM→
Hx.

2.4 Connections and Hessians

We would like to define the second derivative of a smooth function f : M → R on

a Riemannian manifold M. If f were defined on a Euclidean space, the directional

derivative of the gradient in some direction ξ would we given by

D(gradf(x))[ξ] = lim
t→0

gradf(x+ tξ)− gradf(x)

t
.

This definition is not applicable on manifolds for two reasons. The expression x + tξ is

undefined, since M is not a vector space. Additionally, gradients at different points on

the manifold belong to different tangent spaces, and their difference is also undefined. To

resolve these issues, the concept of affine connection is introduced.

Definition 2.14 (affine connection). Let X(M) denote the set of smooth vector fields on

M and F(M) denote the set of smooth scalar fields on M. An affine connection ∇ on a

manifold M is a mapping

∇ : X(M)× X(M)→ X(M) : (X, Y) 7→ ∇XY

which satisfies the following properties:

1. F(M)-linearity in X: ∇fX+gYZ = f∇XZ + g∇YZ,

2. R-linearity in Y : ∇X(aY + bZ) = a∇XY + b∇XZ,

3. Product rule (Leibniz’s law): ∇X(fY) = (Xf)Y + f∇XY ,

25

in which X, Y, Z ∈ X(M), f, g ∈ F(M) and a, b ∈ R.

In the definition above, vector fields are used as derivation objects, as described in

Section 2.2, so that Xf(x) = Df(x)[Xx]. The symbol ∇ in this context denotes an affine

connection and not the Euclidean gradient of a scalar-valued function, which uses the

same symbol.

Definition 2.15 (covariant derivative). The vector field ∇XY is called the covariant

derivative of Y with respect to X for the affine connection ∇. Since (∇XY)x only depends

on X through Xx, we can make sense of the notation ∇ξY where ξ ∈ TxM. It is

interpreted as (∇ξY)x = (∇XY)x for any vector field X such that Xx = ξ.

At each point x ∈ M, the vector field (∇XY)x captures how Y varies at x along the

direction Xx. The Levi-Civita theorem singles out one particular affine connection for

each Riemannian manifold.

Theorem 2.2 (Levi-Civita). On a Riemannian manifoldM, there exists a unique affine

connection ∇ that satisfies

1. ∇XY −∇YX = [X, Y] (symmetry), and

2. Z 〈X, Y 〉 = 〈∇ZX,Y 〉+ 〈X,∇ZY 〉 (compatibility with the Riemannian metric),

for all X, Y, Z ∈ X(M). This affine connection is called the Levi-Civita connection or

the Riemannian connection.

In the above definition, we used the notation [X, Y] for the Lie bracket of X and Y ,

which is a vector defined by [X, Y]f = X(Y f)− Y (Xf), for all f ∈ F(M). Since affine

connections provide a notion of derivative of a vector field, we can use them to define the

Hessian of a scalar field as the derivative of the gradient vector field. On Riemannian

manifolds, the Levi-Civita connection defines the Riemannian Hessian.

Definition 2.16 (Riemannian Hessian). Let f be a scalar field on a Riemannian manifold

M equipped with the Riemannian connection ∇, the Riemannian Hessian of f at x ∈M
is the linear map Hessf(x) : TxM→ TxM defined by

Hessf(x)[ξ] = (∇ξgradf)x = (∇Xgradf)x,

where X is any vector field on M such that Xx = ξ.

We now particularize the Riemannian Hessian to Riemannian submanifolds and Rie-

mannian quotient manifolds.

26

2.4.1 Riemannian submanifolds

The Riemannian connection on a submanifold of a Riemannian manifold is obtained by

a projection onto the tangent space of the connection on the embedding manifold.

Theorem 2.3. Let M be a Riemannian submanifold of a Riemannian manifold M and

let ∇ and ∇ denote the Riemannian connections on M and M. Then,

(∇XY)x = Projx(∇XY)x

for all X, Y ∈ X(M).

In particular, if M is a Euclidean space, then

(∇XY)x = Projx (DY (x)[Xx]) . (2.5)

This means that the Riemannian connection on M can be computed by a classical

derivative in the Euclidean space followed by a projection onto the tangent space. Since

gradf(x) = Projx∇f(x), where ∇f(x) is the classical gradient of f seen as a scalar field

on the embedding Euclidean space (Equation (2.3)), the Riemannian Hessian is given by

Hessf(x)[ξ] = Projx (D(x 7→ Projx∇f(x))[ξ]) . (2.6)

Effectively, it requires to compute the classical gradient ∇f(x), project it on the tangent

space, compute the directional derivative of the result and project once more.

2.4.2 Riemannian quotient manifolds

The next theorem expresses the link between the Riemannian connection of a Riemannian

manifold and the Riemannian connection of one of its Riemannian quotient manifolds.

Theorem 2.4. Let M be a Riemannian manifold and M = M/ ∼ be a Riemannian

quotient manifold of M. Let ∇ and ∇ be the Riemannian connections on M and M,

respectively. Then,

(∇XY)x = Projhx
(
∇XY

)
x̄

for all X, Y ∈ X(M), x ∈ M and any x ∈ π−1(x). Overlines denote horizontal lifts and

Projhx is the orthogonal projection onto the horizontal space at x ∈M.

In the particular case where M is a Euclidean space, this reduces to

(∇XY)x = Projhx
(
DY (x)[Xx]

)
,

27

that is, a classical directional derivative of the horizontal vector field Y followed by a

projection onto the horizontal space. This allows to write the Riemannian Hessian of a

function f : M→ R as

Hessf(x)[ξ] = Projhx
(
D∇f(x)[ξ]

)
, (2.7)

where ∇f is the classical gradient of f seen as a function on the total spaceM (which is

naturally a horizontal vector field, since f is invariant along vertical directions).

2.5 Optimality conditions

Consider the optimization problem

min
x
f(x) subject to x ∈M, (2.8)

where f : M → R is smooth and M is a Riemannian manifold. We state necessary

optimality conditions of first- and second-order for local minimizers of (2.8). A proof of

the next two results can be found in (Boumal, 2020, Section 4.2 and 6.1).

Proposition 2.5 (First-order critical point on manifolds). If x ∈M is a local minimizer

for Problem (2.8), then

gradf(x) = 0. (2.9)

Proposition 2.6 (Second-order critical point on manifolds). If x ∈ M is a local mini-

mizer for Problem (2.8), then

gradf(x) = 0 and Hessf(x) � 0. (2.10)

Implementations of Riemannian optimization methods usually aim to find approxi-

mate critical points, that is, points on the manifold which satisfy first- or second-order

conditions up to a predefined tolerance. Approximate first- and second-order critical

points on manifolds are defined as follows.

Definition 2.17 (Approximate first-order critical points on manifolds). The point x ∈M
is an ε1–first-order critical point of f on M if

‖gradf(x)‖x ≤ ε1. (2.11)

Definition 2.18 (Approximate second-order critical points on manifolds). The point

x ∈M is an (ε1, ε2)–second-order critical point of f on M if

‖gradf(x)‖x ≤ ε1 and Hessf(x) � −ε2 Id . (2.12)

In the definitions above, the norm is induced by the Riemannian metric on M.

28

2.6 Retractions

In Rn, it is straightforward to travel from a point in a given direction. Riemannian

optimization algorithms aim to travel from a given point in a direction prescribed by a

tangent vector. This requires the use of a mapping, called a retraction, which returns a

point on the manifold in the direction of a tangent vector. To arrive at the definition of

retractions, we take a small detour to define geodesics and the exponential map.

A geodesic is a curve γ : R → M with zero acceleration, as defined in (Absil et al.,

2008, Section 5.4). The notion of acceleration is defined by the connection ∇ on M,

hence geodesics depend on the choice of connection. The exponential map travels along

geodesics on the manifold.

Definition 2.19 (Exponential map). LetM be a manifold endowed with a connection ∇
and let x ∈ M. For every ξ ∈ TxM, there exists an open interval I 3 0 and a geodesic

γ(t;x, ξ) : I →M such that γ(0) = x and γ̇(0) = ξ. Moreover, we have the homogeneity

property γ(t;x, aξ) = γ(at;x, ξ). The mapping

Expx : TxM→M : ξ 7→ Expx(ξ) = γ(1;x, ξ)

is called the exponential map at x. In particular, Expx(0) = x, for all x ∈M.

We note the definition of injectivity radius of a manifold, which we come across in

Section 4.5.

Definition 2.20 ((Boumal, 2020) Definition 10.16). The injectivity radius of a Rieman-

nian manifold M at a point x, denoted by inj(x), is the supremum over radii r > 0 such

that Expx is defined and is a diffeomorphism on the open ball

B(x, r) = {v ∈ TxM : ‖v‖x < r} .

By the inverse function theorem, inj(x) > 0.

Geodesics are not readily computable on most manifolds, hence, the exponential map

is usually approximated in optimization algorithms. At a given point x ∈M, a retraction

Rx : TxM→M is a first-order approximation of the exponential map.

Definition 2.21 (Retraction (Absil et al., 2008)). A retraction on a manifold M is a

smooth mapping R from the tangent bundle TM onto M with the following properties.

Let Rx denote the restriction of R to TxM.

(i) Rx(0x) = x, where 0x denotes the zero element of TxM.

(ii) With the canonical identification T0xTxM' TxM, Rx satisfies

DRx(0x) = IdTxM,

where IdTxM denotes the identity mapping on TxM.

29

x
ξ

Rx(ξ)

M

TxM

Figure 2.2: The retraction map

Retractions, illustrated in Figure 2.2, are designed to approximate the exponential

map in a way that is cheap to compute but does not hinder convergence of algorithms.

When the projection of a point from the ambient space to the manifold is available, it

allows to define a retraction by projection (Absil and Malick, 2012), given for ξ ∈ TxM
by

Rx(ξ) = PM(x+ ξ).

For a given manifold, there may be several ways to define a retraction. One important

aspect of Riemannian optimization is to compute retractions efficiently.

2.7 Parallel transport

In Section 4.5, we encounter the notion of parallel transport on a manifold, which we

describe here by following (Boumal, 2020, Section 10.3). Consider a manifoldM equipped

with a connection ∇ and a tangent vector u ∈ TxM. In some situations, it is desirable

to compare u with vectors in the tangent space at a different point y ∈M. We describe

how the vector u may be transported along a curve in a meaningful way. Consider a

smooth curve c : I →M such that

c(0) = x c(1) = y.

Consider a smooth field on this curve, Z ∈ X(c), with Z(c(0)) = u. Let D
dt

: X(c)→ X(c)

denote the covariant derivative on the curve c induced by the connection ∇, as defined

in (Boumal, 2020, Theorem 5.28). We require that Z be parallel with respect to the affine

connection ∇. The upcoming result ensures that such vector field exists and is unique.

30

Definition 2.22. A vector field Z ∈ X(c) such that D
dt
Z = 0 is parallel.

Theorem 2.7. On a manifold M with a connection and induced covariant derivative D
dt

,

for any smooth curve c : I →M, t0 ∈ I and u ∈ Tc(t0)M, there exists a unique parallel

vector field Z ∈ X(c) such that Z(c(t0)) = u.

This justifies the following definition.

Definition 2.23 (parallel transport). Given a smooth curve c on M, the parallel trans-

port of tangent vectors at c(t0) to the tangent space at c(t1) along c,

PTc
t1←t0 : Tc(t0)M→ Tc(t1)M, (2.13)

is defined by PTc
t1←t0(u) = Z(c(t1)), where Z ∈ X(c) is the unique parallel vector field

such that Z(c(t0)) = u.

2.8 Algorithms and implementations

We introduce some classical Riemannian optimization algorithms for the minimization of

a smooth function f : M→ R, where M is a Riemannian manifold.

2.8.1 Riemannian gradient descent

From the notions of Riemannian gradient and retraction, we are able to define a simple

Riemannian optimization algorithm, namely, Riemannian gradient descent (Algorithm 1).

This algorithm uses the negative gradient as a search direction and a retraction to update

the iterate while remaining on the manifold. In order to ensure convergence for an

arbitrary x0 ∈ M, the algorithm must be augmented with a line search to compute the

step sizes. We do not detail such procedure and, instead, choose to use trust-region

methods.

Algorithm 1 Riemannian gradient descent, (Absil et al., 2008)

1: Given: f : M→ R, a retraction R on M, x0 ∈M and ε > 0.
2: k = 0
3: while ‖gradf(xk)‖xk > ε do
4: ηk = −gradf(xk) ∈ TxkM
5: Find step size αk > 0
6: xk+1 = Rxk(αkηk)
7: k = k + 1
8: end while

31

2.8.2 Riemannian trust-region

Trust-region methods constitute a popular family of optimization algorithms that have

been studied in great depths for unconstrained and constrained problems alike (Jorge No-

cedal, 1999; Conn et al., 2000). In this section, we present the Riemannian version of

trust-region methods.

At each iterate xk ∈ M, the Riemannian trust-region builds a local model of the

function on the tangent space TxkM. The method minimizes this model under a ball

constraint that prevents undesirably large steps, where the model does not accurately

represent the function. The Riemannian trust-region subproblem takes the following

form around xk ∈M:

min
η∈TxkM
‖η‖xk≤∆k

m̂xk(η) := f(xk) + 〈η, gradf(xk)〉xk +
1

2
〈η,Hk[η]〉xk , (2.14)

where Hk : TxkM → TxkM is a symmetric operator on TxkM, ∆k is the trust-region

radius and the model m̂xk : TxkM→ R is a quadratic approximation of the pullback f̂xk =

f ◦ Rxk , defined on the tangent space at xk ∈ M for some retraction Rxk : TxkM→M.

The (usually approximate) minimization of the subproblem gives a candidate step ηk,

whose quality is assessed using the following ratio:

ρk =
f(xk)− f(Rxk(ηk))

m̂xk(0xk)− m̂xk(ηk)
(2.15)

where 0xk ∈ TxkM is the zero vector of the tangent space at xk. If ρk is large enough,

which indicates an agreement between the function decrease and the model decrease, the

step ηk is accepted and the next iterate is defined as xk+1 = Rxk(ηk); otherwise the step

is rejected and the trust-region radius is reduced. If ρk is large enough and ‖ηk‖xk = ∆k,

which suggests that the model is a faithful representation of f , the trust-region radius

may also be increased.

First-order Riemannian trust-region When the Hessian of the cost function is not

available, or in order to obtain a cheap first-order method, the identity is used in the

quadratic model, Hk = Id. This gives a method similar to Riemannian gradient descent,

where the trust-region is used to ensure global convergence, as opposed to a line search.

Second-order Riemannian trust-region When the true Hessian of the cost function

is available, the classical second-order trust-region method is obtained with the choice

Hk = Hessf(xk). It is also possible to use an approximation of the true Hessian for Hk.

Algorithm 2 defines a version of the Riemannian trust-region (RTR) which is designed to

reach approximate second-order critical points, defined in Equation (2.10). A first-order

version of the algorithm is given by the choice of parameter εH =∞.

32

Algorithm 2 Riemannian trust-region (RTR) (Boumal et al., 2019)

1: Given: x0 ∈M and 0 < ∆0 < ∆̄, εg > 0, εH > 0 and 0 < ρ′ < 1/4
2: Init: k = 0
3: while true do
4: if ‖gradf(xk)‖xk > εg then
5: Obtain ηk ∈ TxkM satisfying A5
6: else if εH <∞ then
7: if λmin(Hk) < −εH then
8: Obtain ηk ∈ TxkM satisfying A6
9: else
10: return xk
11: end if
12: else
13: return xk
14: end if
15: x+

k = Rxk(ηk)
16: ρ = f(xk)− f(x+

k)/(m̂xk(0)− m̂xk(ηk))
17: if ρ < 1/4 then
18: ∆k+1 = ∆k/4
19: else if ρ > 3/4 and ‖ηk‖xk = ∆k then

20: ∆k+1 = min(2∆k, ∆̄)
21: else
22: ∆k+1 = ∆k

23: end if
24: if ρ > ρ′ then
25: xk+1 = x+

k

26: end if
27: k = k + 1
28: end while

33

Worst-case complexity of the Riemannian trust-region

The study of global complexity in optimization establishes the number of iterations that

a particular algorithm takes in the worst-case to reach some approximate criticality con-

dition from an arbitrary initial guess of the solution. Classical first- and second-order

optimization algorithms on Riemannian manifolds have global worst-case complexities

with rates matching their unconstrained counterparts, as was shown in (Boumal et al.,

2019). To state this result for Algorithm 2, we introduce some assumptions.

A1. There exists f ∗ > −∞ such that f(x) ≥ f ∗ for all x ∈M.

Assumptions A2 and A3 impose some Lipschitz continuity conditions on the pullback

of f . In Section 4.5, we discuss the practicality of these assumptions for our formulation

of nonlinear matrix recovery problems.

A2 (Lipschitz gradient of the pullback). There exists Lg ≥ 0 such that for all x ∈ M,

the pullback f̂x = f ◦ Rx has Lipschitz continuous gradient with constant Lg, that is, for

all η ∈ TxM, it holds that∣∣∣f̂x(η)− [f(x) + 〈η, gradf(x)〉]
∣∣∣ ≤ Lg

2
‖η‖2 . (2.16)

A3 (Lipschitz Hessian of the pullback). There exists LH ≥ 0 such that, for all x ∈ M,

the pullback f̂x = f ◦ Rx has Lipschitz continuous Hessian with constant LH , that is, for

all η ∈ TxM, it holds that∣∣∣∣f̂x(η)−
[
f(x) + 〈η, gradf(x)〉+

1

2

〈
η,∇2f̂x(0x)[η]

〉]∣∣∣∣ ≤ LH
6
‖η‖3 . (2.17)

A4. There exists c0 ≥ 0 such that, for all first-order steps, ‖Hk‖ ≤ c0 and Hk is radially

linear, that is, ∀α ≥ 0 and ∀η ∈ TxkM, Hk[αη] = αHk[η].

The assumptions A5 and A6 impose some sufficient decrease on the model for first- and

second-order steps which are required for the convergence analysis of RTR. In practical

implementations of Algorithm 2, these conditions may not be enforced, and we describe

below a truncated conjugate gradient scheme used in practice to minimize the RTR

subproblems.

A5. There exists c2 > 0 such that all first-order steps ηk satisfy

m̂k(0xk)− m̂k(ηk) ≥ c2 min

(
∆k,

εg
c0

)
εg. (2.18)

A6. There exists c3 > 0 such that all second-order steps ηk satisfy

m̂k(0xk)− m̂k(ηk) ≥ c3∆2
kεH . (2.19)

34

Finally, A7 ensures that Hk is close to the Hessian of the pullback in directions selected

by the algorithm.

A7. There exists c1 ≥ 0 such that, for all second-order steps,∣∣∣〈ηk,(∇2f̂xk(0xk)−Hk

)
[ηk]
〉∣∣∣ ≤ c1∆k

3
‖ηk‖2 .

In addition, for all second-order steps, Hk is linear and symmetric.

Define the following constants

λg =
1

4
min

(
1

c0

,
c2

Lg + c0

)
and λH =

3

4

c3

LH + c1

.

The following (sharp) worst-case bound for Riemannian trust-region was recently estab-

lished.

Theorem 2.8 (Global complexity of RTR (Boumal et al., 2019)). Under A1, A2, A5, A4

and assuming εg ≤
∆0

λg
, Algorithm 2 produces an iterate xN1 satisfying ‖gradf(xN1)‖ ≤ εg

with

N1 ≤ O(1/ε2
g).

Furthermore, if εH < ∞ then under additionally A3, A6, A7 and assuming εg ≤
c2

c3

λH
λ2
g

and εH ≤
c2

c3λg
, Algorithm 2 also produces an iterate xN2 satisfying ‖gradf(xN2)‖ ≤ εg

and λmin(HN2) ≥ −εH with

N1 ≤ N2 ≤ O
(

1

ε2
gεH

)
.

Truncated conjugate gradient method for the RTR subproblem

In implementations of the Riemannian trust-region, it is typical to neglect A5 and A6

to approximately minimize the RTR subproblem using a truncated conjugate gradients

method (Algorithm 3). This is the method of choice in the Manopt toolbox for Rieman-

nian optimization, which we introduce in the next section.

2.8.3 Riemannian optimization toolboxes: Manopt and PyManopt

For the implementation of Riemannian optimization methods, we use the Manopt tool-

box in Matlab (Boumal et al., 2014) and Pymanopt, its adaptation in Python (Townsend

et al., 2016). Both toolboxes implement a number of classical solvers, including the Rie-

mannian trust-region which we use as the default solver for smooth optimization problems

on manifolds. The toolboxes also implement the geometry of the Riemannian manifolds

35

Algorithm 3 truncated Conjugate Gradient method (Absil et al., 2008, page 144)

1: Given: xk ∈M and ∆, θ, κ > 0
2: Init: η0 = 0 ∈ TxkM, r0 = gradf(xk), δ0 = −r0

3: for j = 0, . . . ,max inner iterations− 1 do
4: if 〈δj, Hk[δj]〉xk ≤ 0 then
5: Compute τ such that η = ηj+τδj minimizes m̂xk in (2.14) and satisfies ‖η‖xk =

∆ as in (Conn et al., 2000, Eqs. (7.5.5)-(7.5.7))
6: return ηk := η
7: end if
8: Set αj = 〈rj, rj〉xk/〈δj, Hk[δj]〉xk
9: Set ηj+1 = ηj + αjδj
10: if ‖ηj+1‖xk ≥ ∆ then
11: Compute τ ≥ 0 such that η = ηj + τδj satisfies ‖η‖xk = ∆
12: return ηk := η
13: end if
14: rj+1 = rj + αjHk[δj]

15: if ‖rk+1‖xk ≤ ‖r0‖xk min(‖r0‖θxk , κ) then
16: return ηk := ηj+1 . This approximate solution is good enough
17: end if
18: βj+1 = 〈rj+1, rj+1〉xk/〈rj, rj〉xk
19: δj+1 = −rj+1 + βj+1δj
20: end for

that we encounter in this thesis, with the exception of affine subspaces (Section 2.9.2)

which we use for matrix sensing and have implemented ourselves. The only sensible dif-

ference between the Matlab and Python toolboxes resides in the way the derivatives of

the cost function are computed. In Matlab, the toolbox expects to receive an expression

for the (Euclidean) gradient of the cost function and its Hessian if needed. If they are

not provided, finite differences are used, which is typically slow. Pymanopt benefits from

a powerful automatic differentiation library in Python, and there is no need to provide

the derivatives; the cost function and the manifold on which is it defined are enough to

define an optimization problem and call a solver. The latest version of Manopt introduced

automatic differentiation, but we did not use it for the results in this thesis.

2.9 Manifolds of interest

We provide a list of the Riemannian manifolds that appear throughout the thesis, and

describe their geometries. When we encounter these manifolds in the chapters to come,

we reference the reader back to this section for a detailed description.

36

2.9.1 Euclidean spaces

First of all, it is worth noting that a Euclidean space E with inner product 〈·, ·〉 is a

Riemannian manifold. At each point x ∈ E , the tangent space is the Euclidean space

itself, TxE = E , with the inner product 〈·, ·〉 as the Riemannian metric. The exponential

map is given by Expx(v) = x+v for v ∈ E , which provides an easily computable retraction.

This trivial identification of a Euclidean space as a Riemannian manifold has the benefit

that unconstrained optimization problems and methods are part of the formalism of

Riemannian optimization, and do not require particular attention.

2.9.2 Affine subspaces

We describe an affine subspace in Rn×s as a Riemannian manifold. This set appears

in Chapter 4, where we solve matrix recovery problems using Riemannian optimization.

Naturally, the formalism of Riemannian manifolds is not strictly needed to deal with affine

subspaces, as they are flat spaces. Nevertheless, using the Riemannian approach gives a

straightforward way to implement feasible methods for affine constraints, and is useful

when these constraints appear in conjunction with other (more complex) Riemannian

manifolds.

Consider m linearly independent matrices A1, . . . , Am ∈ Rn×s and the linear operator

A : Rn×s → Rm defined by A(X)i = 〈Ai, X〉 for i = 1, . . . ,m where 〈·, ·〉 is the usual trace

inner product in Rn×s. For some vector b ∈ Rm, define the set

LA,b = {X ∈ Rn×s : A(X) = b}, (2.20)

an embedded submanifold of Rn×s. At any point X ∈ LA,b, the tangent space is the null

space of A,

TXLA,b = ker(A) = {∆ ∈ Rn×s : A(∆) = 0}.

Since the tangent space does not depend on X, we write TLA,b. The tangent space

inherits an inner product from the embedding space Rn×s,

〈∆1,∆2〉 = trace(∆>1 ∆2) for all ∆1,∆2 ∈ TLA,b.

The Riemannian gradient of a function f : LA,b → R is given by the orthogonal projection

of the Euclidean gradient onto the tangent space TLA,b, as indicated by Equation (2.3).

From the fundamental theorem of algebra, ker(A) = range(A>)⊥. Therefore we can

express Pker(A) = Id−Prange(A>). The application A is represented by a flat matrix

A ∈ Rm×ns such that A(X) = AX(:) ∈ Rm, where X(:) is a vector of length ns made of

37

the columns of X taken from left to right and stacked on top of each other. Concretely

this gives,

A(X) =


〈A1, X〉
〈A2, X〉

...
〈Am, X〉

 =


A1(:)>

A2(:)>

...
Am(:)>

X(:) =: AX(:).

The tall matrix A> represents the linear application A>. Viewing A> as the matrix of an

overdetermined system of linear equations convinces us that Prange(A>) = A>(AA>)−1A.

Equivalently, if Q ∈ Rm×m is an orthogonal basis for range(A>) (which can be obtained

by a reduced QR factorization of A>), we can apply Prange(A>) = QQ>. The projection is

given by

Pker(A) = Ins − A>(AA>)−1A = Ins −QQ>. (2.21)

Therefore,

PTLA,b : Rn×s → TLA,b : ∆ 7→ (Ins −QQ>)∆ (2.22)

where Q ∈ Rm×m is an orthogonal basis for range(A>). The Riemannian Hessian of a

function f : LA,b → R is computed using Equation (2.6).

As Chapter 3 details, in matrix completion problems, the operatorA selects the known

entries of some matrix M ∈ Rn×s. In that case, the matrices Ai have all entries equal

to zero, except one entry with value 1. Let Ω denote the set of indices (i, j) selected by

the operator A. The description of the feasible subspace is simplified. We write LΩ,b =

{X ∈ Rn×s : Xij = Mij, ij ∈ Ω} to make explicit that the measurements correspond to

matrix completion. The tangent space is TLΩ,b = {∆ ∈ Rn×s : ∆ij = 0 for ij ∈ Ω} and

the projection onto TLΩ,b simply amounts to setting the entries in Ω to zero,

PTLΩ,b
(∆) =

{
0 for ij ∈ Ω

∆ij for ij /∈ Ω.

The natural retraction on LA,b for X ∈ LA,b and ∆ ∈ TLA,b is given by

RX : TLA,b → LA,b : ∆ 7→ X + ∆, (2.23)

because the manifold is flat. Hence this simple retraction also happens to be the expo-

nential map.

2.9.3 The Stiefel manifold: orthonormal matrices

For p ≤ n, the set of orthogonal matrices of size n× p is called the Stiefel manifold:

St(n, p) = {X ∈ Rn×p : X>X = Ip},

38

where Ip is the identity matrix of size p. The defining function for the Stiefel manifold is

given by

h : Rn×p → Sym(p) : X 7→ h(X) = X>X − Ip,

where Sym(p) is the space of symmetric matrices of size p. The application of Theorem 2.1

shows that St(n, p) is an embedded submanifold of Rn×p. We verify that h is smooth and

h−1(0) = St(n, p). A direct computation gives

Dh(X) : Rn×p → Sym(p) : V 7→ Dh(X)[V] = X>V + V >X.

One can verify that Dh(X) is surjective and has rank p(p + 1)/2 for all X ∈ St(n, p).

Therefore, dim St(n, p) = dimRn×p − dim Sym(p) = np− p(p+ 1)/2. The tangent space

to St(n, p) at X is given by the null space of Dh(X), that is,

TXSt(n, p) = ker Dh(X) = {V ∈ Rn×p : X>V + V >X = 0}. (2.24)

It is useful to parametrize the tangent space explicitly. For X ∈ St(n, p), consider X⊥ ∈
Rn×(n−p) such that

[
X X⊥

]
is orthogonal. Since

[
X X⊥

]
is invertible, any matrix

V ∈ Rn×p can be written as

V =
[
X X⊥

] [Ω
B

]
= XΩ +X⊥B,

for a unique choice of Ω ∈ Rp×p and B ∈ R(n−p)×p. The matrix V ∈ Rn×p is a tangent

vector at X ∈ St(n, p) if and only if Dh(X)[V] = 0. This gives

0 = Dh(X)[V] = X>(XΩ +X⊥B) + (XΩ +X⊥B)>X = Ω + Ω>.

This restricts Ω to be skew-symmetric, while B is free. We have reached a new description

of the tangent space:

TXSt(n, p) =
{
XΩ +X⊥B : Ω ∈ Skew(p), B ∈ R(n−p)×p} , (2.25)

where Skew(p) =
{

Ω ∈ Rp×p : Ω>= −Ω
}

. The projection of a vector V ∈ Rn×p onto the

tangent space TXSt(n, p) is given by

ProjX(V) = V −XX>V + V >X

2
(2.26)

= (I−XX>)V +X
X>V − V >X

2
. (2.27)

The manifold St(n, p) is naturally turned into a Riemannian manifold by making it a Rie-

mannian submanifold of Rn×p. The Riemannian metric is the usual trace inner product.

Consider a smooth real-valued function, f : St(n, p) → R, with a smooth extension

on Rn×p, labelled f : Rn×p → R. We wish to find a formula for the Riemannian gradient

39

and Riemannian Hessian of f using the derivatives of f . These follow from the results

in Sections 2.3.1 and 2.4.1, and the fact that St(n, p) is a Riemannian submanifold of

Rn×p. Equation (2.3) gives the gradient of f as the projection of the gradient of f on the

tangent space:

gradf(X) = ProjX
(
gradf(X)

)
= gradf(X)−Xsym

(
X>gradf(X)

)
,

where sym(M) = (M>+ M)/2 is the symmetric part of a matrix. Covariant derivatives

on St(n, p) coincides with the usual vector field derivative in Rn×p, followed by orthogonal

projection to the tangent space (Equation (2.5)):

Hessf(X)[V] = ∇V gradf(X)

= ProjX (Dgradf(X)[V])

= ProjX
(
Hessf(X)[V]− V sym(X>gradf(X))−XS

)
= ProjX

(
Hessf(X)[V]− V sym(X>gradf(X)

)
,

where S = sym
(
V >gradf(X) +X>Hessf(X)[V]

)
, and XS vanishes through ProjX .

A popular retraction for the Stiefel manifold is the Q-factor retraction. For X ∈
St(n, p) and V ∈ TXSt(n, p):

RX(V) = Q, (2.28)

where QR = X+V is a QR decomposition: Q ∈ St(n, p) and R ∈ Rp×p is upper triangular

with nonnegative diagonal entries.

2.9.4 The orthogonal group and rotation matrices

The orthogonal group consists of square matrices with orthonormal columns, that is

O(n) =
{
X ∈ Rn×n : X>X = XX>= In

}
,

whose dimension is

dim O(n) = n2 − n(n+ 1)/2 = n(n− 1)/2.

Naturally, the orthogonal group correspond to square Stiefel matrices, that is, O(n) =

St(n, n). Therefore, the expression of tangent spaces on O(n) follows from the tangent

spaces on St(n, p) (Equation (2.25)):

TXO(n) = {XΩ : Ω ∈ Skew(n)} = XSkew(n), (2.29)

40

where Skew(n) =
{
X ∈ Rn×n : X>= −X

}
. The orthogonal projection onto tangent

spaces is identical to the projection onto St(n, p), but for square matrices, the fact that

XX>= In brings a simplification:

ProjX(V) = V −Xsym(X>V)

= X skew(X>V),

where skew(M) =
M −M>

2
extracts the skew-symmetric part of a matrix. We turn

O(n) into a Riemannian submanifold by restricting the canonical inner product on Rn×n

to tangent spaces of O(n). Using that O(n) is a Riemannian submanifold of Rn×n, we get

a formula for the Riemannian gradient of a function f : O(n)→ R based on the gradient

of a smooth extension f : Rn×n → R. Equation (2.3) yields

gradf(X) = ProjX
(
∇f(X)

)
= X skew(X>gradf(X)).

The orthogonal group is made of two distinct connected components, corresponding to

matrices of determinant +1 and −1. Orthogonal matrices represent rotations in Rn,

composed with a reflection for those with determinant −1. The set of pure rotations is

called the special orthogonal group :

SO(n) = {X ∈ O(n) : det(X) = +1} .

Optimization algorithms on manifolds stay in the connected component that they are

initialized in. Hence, it matters in which component the algorithm is initialized.

For the Hessian of a real-valued function, the formula established for St(n, p) is also

valid on O(n) and SO(n):

Hessf(X)[V] = ProjX
(
Hessf(X)[V]− V sym

(
X>gradf(X)

))
.

The Q-factor retraction (Equation (2.28)), which is described in the previous section for

Stiefel manifolds, is also a retraction on O(n) and SO(n).

2.9.5 The Grassmann manifold

The Grassmann manifold, written Grass(N, r), is the set of all linear subspaces of dimen-

sion r in RN . This manifold appears in Chapters 4 and 5, for the rank minimization of a

feature matrix. We follow the geometry described in (Boumal and Absil, 2015) and im-

plemented in Manopt. A point U ∈ Grass(N, r) is represented by a matrix U ∈ St(N, r)

such that range(U) = U . For any orthogonal matrix Y ∈ O(r), the matrix UY is also

41

a valid representation of U since range(UY) = range(U). The orthogonal group induces

an equivalence relation on the Stiefel manifold, where any two matrices with the same

column space are equivalent. In this regard, the Grassmann is a quotient manifold

Grass(N, r) = St(N, r)/O(r), (2.30)

and inherits properties as a Riemannian quotient manifold of the ambient space St(N, r)

as described in Sections 2.2.2 and 2.3.2. As a manifold, the Grassmann admits a tangent

space at every point U . Once the representation U has been chosen for U , tangent vectors

H ∈ TUGrass(N, r) are represented by their horizontal lift at U ∈ St(N, r), namely, as

matrices H ∈ RN×r. The tangent space TUGrass(N, r) is represented by the horizontal

space at U ∈ St(N, r), which we denote by

TUGrass(N, r) = {H ∈ RN×r : U>H = 0} = range(U⊥). (2.31)

This is a slight abuse of notation since the matrix U cannot belong to the Grassmann

manifold. The projection onto the horizontal space TUGrass(N, r) is given by

ProjhU(H) = (I− UU>)H, (2.32)

with U ∈ St(N, r). The horizontal space is endowed with the usual inner product inher-

ited from the ambient space RN×r,

〈H1, H2〉U = trace(H>1 H2), ∀H1, H2 ∈ TUGrass(N, r). (2.33)

We define the polar retraction on Grass(N, r), given for U ∈ Grass(N, r) and ∆ ∈
TUGrass(N, r) by

RU : TUGrass(N, r)→ Grass(N, r) : RU(H) = range (polar(U +H)) , (2.34)

where polar(A) ∈ St(N, r) denotes the orthogonal factor of the polar decomposition

of A ∈ RN×r. This can be computed from a (thin) singular value decomposition: let

A = UΣV >, then polar(A) = UV >.

Consider a smooth function f : RN×r
∗ → R, where RN×r

∗ is the set of full-rank matrices

of size N × r. Let f |St
denote its restriction to the Stiefel manifold and further assume

that f |St
is only a function of the column space of its argument:

f |St
(U) = f |St

(UQ) for all U ∈ St(N, r), Q ∈ O(r).

Under this assumption, the function

f : Grass(N, r)→ R : U 7→ f(U) = f |St
(U)

42

is well defined. It is possible to express the Riemannian derivatives of f using the deriva-

tives of f . Using that St(N, r) is a Riemannian submanifold of RN×r
∗ and that Grass(N, r)

is a Riemannian quotient manifold of St(N, r), we combine Equations (2.3) and (2.4) to

reach

gradf(U) = ProjhU(gradf(U)) = (I − UU>)gradf(U),

as presented in (Boumal and Absil, 2015, Equation 11). In practice, this means that we

compute the gradient of f in the usual way and then project it with I−UU>. Additionally,

the Hessian of f follows from Equations (2.6) and (2.7); and is given by

Hessf(U)[H] = ProjhU(DF (U)[H]) = (I − UU>)DF (U)[H],

with

F (U) : RN×r
∗ → RN×r : U 7→ F (U) = (I − UU>)gradf(U),

as presented in (Boumal and Absil, 2015, Equation 12).

2.9.6 Manifolds defined by h(x) = 0

Working over a Euclidean space E with inner product 〈·, ·〉 and associated norm ‖·‖,
define the set

M = {x ∈ E : h(x) = 0},

for some smooth function h : E → Rm. This is the setting that we consider in Chapter 6:

generic smooth equality constraints, for which there is no closed-form expression to gen-

erate a feasible point. We follow the presentation in (Boumal, 2020, Section 7.7). The

following proposition gives a condition for the set M to be a smooth manifold, which

follows directly from Theorem 2.1.

Proposition 2.9. The set M = {x ∈ E : h(x) = 0} is an embedded submanifold of E if

and only if Dh(x) has full rank m for all x ∈M.

Using the notation h(x) = (h1(x), . . . , hm(x))> to denote the m components of h, we

find the linear operator

Dh(x)[v] = (〈∇h1(x), v〉 , . . . , 〈∇hm(x), v〉)>,

and its adjoint

Dh(x)∗[α] =
m∑
i=1

αi∇hi(x).

43

The tangent spaces are given by

TxM = ker Dh(x) = {v ∈ E : 〈v,∇hi(x)〉 = 0 for all i} .

The fact that Dh(x) has full rank means that the gradients ∇hi(x) are linearly indepen-

dent. They form a basis of the normal space at x:

NxM = (ker Dh(x))⊥ = span(∇h1(x), . . . ,∇hm(x)) .

The manifoldM is then naturally turned into a Riemannian manifold by restricting the

inner product 〈·, ·〉 to TM. For any vector x ∈ E , there exists a unique α ∈ Rm such that

v = Projx(v) + Dh(x)∗[α],

where α is the unique solution to the least squares problem

α = arg min
α∈Rm

‖v −Dh(x)∗[α]‖ = (Dh(x)∗)† [v],

where the dagger denotes the Moore–Penrose pseudo-inverse. This gives the projection

onto the tangent space as

Projx(v) = v −Dh(x)∗
[
(Dh(x)∗)†[v]

]
.

Consider the equality constrained optimization problem

min
x
f(x) subject to h(x) = 0, (2.35)

where f : E → R and h : E → Rm are smooth. Using thatM is a Riemannian submanifold

of E , a formula for the Riemannian gradient of f on M follows from (2.3):

gradf(x) = Projx(∇f(x)) = ∇f(x)−Dh(x)∗[λ(x)] (2.36)

where λ(x) = (Dh(x)∗)†[∇f(x)]. In other words,

∇f(x) = gradf(x) +
m∑
i=1

λi(x)∇hi(x).

For the second derivatives, we get from (2.6) that Hessf(x)[v] is the orthogonal projection

of D(gradf(x))[v] to TxM. We find

D(gradf(x))[v] = ∇2f(x)[v]−
m∑
i=1

Dλi(x)[v] · ∇hi(x)−
m∑
i=1

λi(x)∇2hi(x)[v].

Since each ∇hi(x) is orthogonal to TxM, it follows that

Hessf(x)[v] = Projx

(
∇2f(x)[v]−

m∑
i=1

λi(x)∇2hi(x)[v]

)
.

We have reached the conclusion that, for all x ∈M:

Hessf(x) = Projx ◦

(
∇2f(x)−

m∑
i=1

λi(x)∇2hi(x)

)
◦ Projx. (2.37)

44

Optimality conditions on manifolds defined by h(x) = 0. Consider the La-

grangian function

L : E × Rm → R : (x, λ) 7→ L(x, λ) = f(x)− 〈λ, h(x)〉 .

First- and second-order necessary optimality conditions for (2.35) are well known in the

constrained optimization literature. The first-order condition expresses that at any min-

imizer, the gradient of the Lagrangian vanishes.

Proposition 2.10. If x is a local minimizer of Problem (2.35), then there exists a vector

λ ∈ Rm such that

∇f(x) =
m∑
i=1

λi∇hi(x) and h(x) = 0. (2.38)

Points who satisfy (2.38) are also often called KKT points. At the second-order, it

is additionally necessary that the Hessian of the Lagrangian be positive semidefinite on

TxM.

Proposition 2.11. If x is a minimizer of Problem 2.35, there exists a vector λ ∈ Rm

such that Equation (2.38) holds with〈
∇2
xxL(x, λ)[v], v

〉
≥ 0 for all v ∈ kerDh(x). (2.39)

Conditions (2.38) and (2.39) are equivalent to their Riemannian analogues in (2.9)

and (2.10), which state that a local minimizer x ∈ M of problem (2.35), satisfies

gradf(x) = 0 and Hessf(x) � 0.

45

Chapter 3

Matrix recovery problems

In this chapter, we introduce and give an overview of the field of matrix recovery. Sec-

tion 3.1 gives a brief summary of standard low-rank matrix recovery approaches. This

serves as a reference for the origins of the problem tackled in this thesis. We present

the main formulations of the problem, some of which can be extended to the nonlinear

setting. In Section 3.2, we introduce the nonlinear matrix recovery problem, the task

of recovering particular classes of high-rank matrices, and describe the case studies that

we further consider in Chapters 4 and 5, namely, the algebraic variety model, unions

of subspaces and clustering. Finally, we give an up-to-date overview of related work on

nonlinear matrix recovery.

For some integer m < ns, consider a matrix M ∈ Rn×s that satisfies m linear equations

〈Ai,M〉 = bi for given matrices Ai ∈ Rn×s and a given vector b ∈ Rm, where we use the

usual inner product 〈Ai,M〉 = trace(A>i M). We define the linear operator

A : Rn×s → Rm where A(M)i = 〈Ai,M〉, (3.1)

so as to have the compact notation A(M) = b for the measurements. The matrices Ai

are assumed to be linearly independent. When each matrix Ai has exactly one non-zero

entry which is equal to 1, this is known as a matrix completion problem. The matrix

M is then known on a subset Ω of the complete set of entries {1, . . . , n} × {1, . . . , s}.
Throughout this chapter, M ∈ Rn×s denotes the matrix to be recovered, that is, the

solution of the problem. We use X as a variable to denote a generic matrix in Rn×s.

3.1 Low-rank matrix recovery

The task of recovering a matrix M based on A and b alone is ill-posed, as the system is

underdetermined. A popular regularization is to seek a low-rank matrix M that satisfies

A(M) = b. In this section, we review the main existing approaches of low-rank matrix

46

recovery, the problem of finding a low-rank matrix using only partial (linear) measure-

ments. Low-rank matrix completion has become a very active area of research over the

past two decades, given the wide range of applications that are connected to low-rank

matrix completion, such as recommendation problems, collaborative filtering and system

identification. Surveys on low-rank matrix completion include (Davenport and Romberg,

2016; Nguyen et al., 2019). We explore formulations that have been proposed to solve

the low-rank matrix recovery problem and describe algorithms to solve them.

Problem formulation The formulation of the problem that is most faithful to practical

settings is to look for the matrix of smallest possible rank that satisfies the observations,

that is, {
min
X

rank(X)

A(X) = b.
(3.2)

Problem (3.2) is NP hard in general (Harvey et al., 2006). Additionally, the rank is

an impractical function to minimize as it is not continuous. If the measurements are

noisy, (3.2) is not robust and it is more appropriate to minimize a least-squares residual

of the measurements, as in {
min
X

‖A(X)− b‖2
2

rank(X) ≤ r,
(3.3)

where the rank has been encoded as a constraint using the set

M≤r =
{
X ∈ Rn×s : rank(X) ≤ r

}
.

Amongst the approaches that we describe below, some try to solve (3.3) directly, while

others work with a convex relaxation of (3.2).

Summary of existing approaches

Nuclear norm minimization This approach aims to solve a relaxation of (3.2) and

leverage the power of convex optimization. Formulation (3.2) has a nonconvex cost

function and a convex set of constraints. As defined in (Recht et al., 2010), the convex

envelope of a function f : C → R defined on a convex set C, is the largest convex function

g such that g(x) ≤ f(x) for all x ∈ C. Recall that the nuclear norm of a matrix X ∈ Rn×s

is defined as the sum of its singular values,

‖X‖∗ =

min(n,s)∑
i=1

σi(X).

47

Recht et al. (2010) show that the nuclear norm is the convex envelope of the rank function,

and the following problem is the tightest convex relaxation to (3.2):{
min
X
‖X‖∗

A(X) = b.
(3.4)

Candès and Tao (2010) show that for matrices with so-called low incoherence, the solu-

tion of (3.4) coincides with the global minimizer of (3.2), provided that there are enough

measurements, m > O(sr polylog(s)) for s ≥ n. The convex relaxation (3.4) can be

transformed into an equivalent semidefinite program (SDP) whose global minimum can

be found in polynomial time using interior point methods (Nesterov, 2004). However, this

approach scales poorly in the matrix dimension and most computers run out of memory

when n and s reach a few thousands. Hence, the applicability of this relaxation for large-

scale matrices is related to the development of scalable SDP solvers, which is an ongoing

field of research. First-order methods have also been investigated for nuclear norm mini-

mization, including (Toh and Yun, 2010; Recht and Ré, 2013). For example, Toh and Yun

(2010) propose an accelerated proximal gradient method for nuclear norm minimization

with a least-squares penalty term for the measurements. An advantage of the convex

relaxation (3.4) is that the resulting algorithms are easier to analyse. Various works

prove exact recovery guarantees for algorithms based on nuclear norm minimization in

the noiseless setting as well as stable recovery in the noisy setting. Scalability concerns

have prompted the search for nonconvex formulations that exploit the low-rank structure

of the problem and reduce the storage complexity of the algorithms.

Iterative hard thresholding Iterative hard thresholding (IHT) is inspired from com-

pressed sensing and the nonconvex formulation (3.3). It is a first-order method which was

introduced for matrix completion in (Jain et al., 2010). It consists in taking a gradient

step of the objective and then projecting back onto the set M≤r, so that every iterate

satisfies the constraints. The gradient is given by

∇
(
‖A(X)− b‖2

2

)
= 2A∗(A(X)− b)

where the adjoint operator is defined as

A∗ : Rm → Rn×s : y 7→ A∗(y) =
m∑
i=1

yiAi,

with the matrices Ai that define the operator A (Equation (3.1)). A projection onto

the non-convex set M≤r can be computed as follows. Let X =
∑min(n,s)

i=1 σiuiv
>
i be the

48

singular value decomposition of X, with σ1 ≥ · · · ≥ σmin(n,s) ≥ 0. The projection is given

by the truncated singular value decomposition

PM≤r(X) =
r∑
i=1

σiuiv
>
i .

Note that this projection is not unique if σr = σr+1. The iterative hard thresholding

iteration, for some constant step size α > 0, is given by

Xk+1 = PM≤r (Xk − 2αA∗(A(Xk)− b)) for k = 0, 1, 2, . . .

When the step size varies across iterations, the method is called normalised iterative

hard thresholding (Tanner and Wei, 2013). Since the iterates produced by IHT have a

prescribed rank, they can be stored in a low-rank decomposition, which is critical for

large-scale problems as it avoids storing matrices of size n× s.

Optimization on the fixed-rank manifold Another approach is to use the fact that

the set of matrices of size n× s and rank r,

Mr = {X ∈ Rn×s : rank(X) = r},

is a smooth manifold, which allows the use of Riemannian optimization methods. The

manifoldMr can be described using the singular value decomposition of a rank r matrix

Mr = {UΣV > : U ∈ Rn×r,Σ ∈ Rr×r, V ∈ Rs×r, U>U = Ir, V
>V = Ir,

Σ = diag(σi), σ1 ≥ · · · ≥ σr > 0}.

Vandereycken (2013) defines a Riemannian geometry forMr as an embedded submanifold

of Rn×s, and shows how to represent tangent vectors as low-rank matrices and compute

retractions efficiently. The author proposes to use a Riemannian conjugate gradient

method on Mr to solve the following matrix completion problem:{
min
X

‖PΩ(X −M)‖2
F

X ∈Mr.
(3.5)

The conjugate gradient method requires the definition of a vector transport onMr, which

allows to compare tangent vectors that belong to tangent spaces at different points on

the manifold. An advantage of using optimization methods on Mr, is that matrices and

tangent vectors can be stored as low-rank matrices, which keeps the computational costs

proportional to the rank, and avoids computations in the ambient space Rn×s.

49

Alternating minimization A matrix X ∈ Rn×s of rank at most r can be factorized as

X = UV > with U ∈ Rn×r and V ∈ Rs×r. This allows to rewrite (3.3) using the variables

U and V , which gives 
min
U,V

‖A(UV >)− b‖2
2,

U ∈ Rn×r,

V ∈ Rs×r.

(3.6)

The strategy used in (Koren et al., 2009) is to minimize (3.6) over each variable separately

in an alternating fashion. Each subproblem is a simple linear least-squares:
Vk+1 = arg min

V ∈Rs×r
‖A(UkV

>)− b‖2
2

Uk+1 = arg min
U∈Rn×r

‖A(UV >k+1)− b‖2
2.

The LMaFit method applies a similar strategy to matrix completion with a dynamic

estimate of the rank (Wen et al., 2012).

Grassmann manifold optimization One issue in formulation (3.6) is that the de-

composition X = UV > is not unique. For any invertible matrix Q ∈ Rr×r, X satisfies

X = (UQ)(Q−1V >). All matrices of the form UQ have the same column space as U and

the cost function does not depend on a specific matrix U . To remove this unnecessary

degree of freedom in the factorization, Dai et al. (2012) introduce a variable on the Grass-

mann manifold, written Grass(n, r), the set of all subspaces of dimension r in Rn, which

we describe in Section 2.9.5. The Grassmann manifold is a quotient manifold, where a

subspace U ∈ Grass(n, r) is represented by a matrix on the Stiefel manifold U ∈ St(n, p),

such that range(U) = U . The formulation in (Dai et al., 2012) is
min
U ,V

∑
(i,j)∈Ω

(
(UV >)ij − Yij

)2

U ∈ Grass(n, r)

V ∈ Rs×r.

(3.7)

In (3.7), the function U might not be continuous with respect to the variable U , if the

minimization over V does not have a unique solution (Boumal and Absil, 2011). In

OptSpace (Keshavan and Oh, 2009), the authors decide to use two variables on the

Grassmann manifold, for the column space and row space:

min
U ,V,S

∑
(i,j)∈Ω

(
(USV >)ij −Mij

)2
+ λ

∥∥USV >∥∥2

F

U ∈ Grass(n, r)

V ∈ Grass(s, r)

S ∈ Rr×r,

(3.8)

50

where U and V are orthonormal basis of U and V , and λ > 0 is a regularization param-

eter. The variable S ∈ Rr×r is introduced so that USV > may have a rank less than r.

In (Keshavan et al., 2010), a similar approach without regularization is used. In (Boumal

and Absil, 2011), the authors combine previous approaches by using a single variable on

the Grassmann and regularizing only the entries outside of Ω:
min
U ,V,S

∑
(i,j)∈Ω

(
(UV >)ij −Mij

)2
+ λ

∑
(i,j)/∈Ω

(UV >)2
ij

U ∈ Grass(n, r)

V ∈ Rs×r.

(3.9)

Boumal and Absil (2011) use the Riemannian trust-region (Algorithm 2) with a precon-

ditioning, which uses an easily invertible approximation of the Hessian, to reach state-

of-the-art performance. Balzano et al. (2010) present an online algorithm to estimate

a subspace from partial measurements, which performs gradient descent steps on the

Grassmann manifold. Their formulation reduces to (3.7) when applied to matrix com-

pletion. The approach is especially relevant for large instances, where one gets access to

the observed entries of each column independently, in an online fashion. In (Eftekhari

et al., 2019), the authors propose an online algorithm to conduct a principal component

analysis from incomplete data which is based on the formulation

min
U ,X

‖X − PU(X)‖2
F

U ∈ Grass(n, r)

A(X) = b

X ∈ Rn×s,

(3.10)

where the orthogonal projection onto the subspace U is given by PU = UU> for some U ∈
St(n, r) such that range(U) = U . The objective is a least-squares residual which penalizes

the columns of X that do not belong to the r-dimensional subspace U . Alternatively, the

cost may be written
∥∥U⊥X∥∥2

F
where U⊥ ∈ St(n, n− p) spans the orthogonal complement

of U . We reconsider formulation (3.10) in Chapter 4 and adapt it to the nonlinear matrix

recovery framework.

The performance of a low-rank matrix recovery algorithm consists in its runtime on

benchmark problems as well as the measurement regime in which it is able to recover the

desired matrix. These performances are expected to vary with the dimensions and the

conditioning of the matrix to recover, which makes it difficult to draw general conclusions

on the relative performances of the algorithms presented above. The following references

include numerical comparisons of several state-of-the-art algorithms for low-rank matrix

recovery (Boumal and Absil, 2015; Cambier and Absil, 2016; Nguyen et al., 2019).

51

3.2 Nonlinear matrix recovery

In this section, we introduce the nonlinear matrix recovery problem, the extension of low-

rank matrix recovery to particular classes of high-rank matrices. Our results in Chapter 4

focus on solving the problem which is introduced here. We describe the concept of feature

space and classes of high-rank matrices to which the framework applies. We consider three

cases studies: algebraic varieties, unions of subspaces and clusters, that are introduced

as Case studies 1, 2 and 3 below. Unions of subspaces are a particular type of algebraic

variety which is particularly prevalent in applications (Eldar and Mishali, 2009; Elhamifar

and Vidal, 2013). The algebraic variety model is also used in Chapter 5 for denoising

and registration problems. Section 3.2.4 introduces clustering with missing information

as a novel application of nonlinear matrix recovery, which uses the Gaussian kernel.

Section 3.2.5 gives an overview of the related work on nonlinear matrix completion. As

always, M ∈ Rn×s denotes the original matrix to be recovered and X is a generic variable

in Rn×s.

3.2.1 Problem description and feature map

Traditional approaches to matrix completion described in the previous section do not

apply if the matrix M is high-rank. Recovering high-rank matrices requires making

assumptions on the structure of M . To this end, let m1, . . . ,ms denote the columns of

M . Low-rank matrix recovery methods can be applied when the points mi ∈ Rn belong to

a low-dimensional affine subspace in Rn. Nonlinear matrix recovery attempts to recover

M when the columns mi of M are related in a nonlinear way. This relies on a function

that maps the columns of a matrix X ∈ Rn×s to a higher-dimensional space (Fan and

Chow, 2018). The feature map is defined as

ϕ : Rn → F : v 7→ ϕ(v),

where F is a Hilbert space. If F is finite dimensional, we write F = RN where N is

the dimension of the feature space, with N ≥ n. We obtain the feature matrix Φ(X) by

applying ϕ to each column of X,

Φ(X) =
[
ϕ(x1) . . . ϕ(xs)

]
∈ RN×s. (3.11)

The map ϕ is chosen using a priori knowledge of the matrix M so that the features of

the data points ϕ(mi) for i = 1, . . . , s, all belong to the same affine subspace in RN .

The nonlinear structure in M causes a rank deficiency in the feature matrix Φ(M), even

though M may be full-rank, as illustrated in Figure 3.1.

52

Rn

M

ϕ F

Φ(M)

Figure 3.1: The feature map ϕ is chosen to exploit the nonlinear structure.

If the features are infinite dimensional or that N is very large, the feature map is

represented using a kernel. This is known as the “kernel trick”. The set F is then called

a reproducing kernel Hilbert space. The kernel map represents the inner product between

elements in the feature space F :

k : Rn × Rn → R : (x, y) 7→ 〈ϕ(x), ϕ(y)〉F . (3.12)

This allows to define the kernel matrix K(X,X) ∈ Rs×s, by K(X,X)ij = k(xi, xj). When

F is finite dimensional, we have K(X,X) = Φ(X)>Φ(X) and therefore, rank(K(X,X))=

rank(Φ(X)) for all X ∈ Rn×s. Indeed, for any matrix A ∈ RN×s, it holds that rank(A) =

rank(A>A), as A and A>A have the same null space. We use the term lifting to denote a

kernel or a feature map, indistinctively.

For an appropriately chosen feature map, the nonlinear matrix recovery problem can

be formulated as the rank minimization of the feature matrix subject to the measurements

constraint (Equation (3.1)): {
min

X∈Rn×s
rank(Φ(X))

A(X) = b.
(3.13)

This seeks to find a matrix which satisfies the measurements using a minimum number of

independent features. This is an extension of Problem (3.2) for low-rank matrix recovery,

where the map Φ is the identity. As is the case in low-rank problems, it is necessary to find

a suitable approximation to the rank function. Section 3.2.5 describes approximations

of (3.13) that have been proposed in recent related work.

3.2.2 The algebraic variety model

We introduce our first case study to which the nonlinear matrix recovery framework

applies: algebraic varieties.

Case study 1 (Algebraic variety model (Cox et al., 1994)). Let Rd[x] be the set of real-

valued polynomials of degree at most d over Rn. A real (affine) algebraic variety of degree

d is defined as the roots of a system of polynomials P ⊂ Rd[x]:

V (P) = {x ∈ Rn : p(x) = 0 for all p ∈ P}.

53

We say that the matrix X =
[
x1 x2 · · · xs

]
∈ Rn×s follows an algebraic variety model

if every column of X belongs to the same algebraic variety, i.e., xi ∈ V (P) for all i =

1, . . . , s.

Let

N(n, d) =

(
n+ d
d

)
=

(n+ d)!

d!n!
, (3.14)

be the dimension of the space of polynomials in n variables of degree at most d. The

monomial features ϕd for some degree d are defined as

ϕd : Rn → RN(n,d) : ϕd(x) =


xα

1

xα
2

...

xα
N

 (3.15)

where αi for i = 1, 2, . . . , N(n, d) is a multi-index of nonnegative integers (αi1, α
i
2, . . . , α

i
n)

so that xα
i

:= x
αi1
1 x

αi2
2 . . . x

αin
n and αi1 + αi2 + · · · + αin ≤ d. We obtain the matrix of

monomial features Φd(X) by applying ϕd to each column of X ∈ Rn×s,

Φd(X) =
[
ϕd(x1) · · · ϕd(xs)

]
∈ RN×s.

The next example illustrates that the monomial features are rank deficient when the

columns of a matrix belong to an algebraic variety.

Example 3.1 (Monomial features). Consider a set of s points in R2 that satisfy one

quadratic polynomial equation. Let

X =

(
x11 x12 · · · x1s

x21 x22 · · · x2s

)
∈ R2×s

satisfy for some coefficients a =
(
a0 a1 a2 a3 a4 a5

)>
, the equation

a0 + a1x1i + a2x2i + a3x1ix2i + a4x
2
1i + a5x

2
2i = 0 for all i = 1, . . . , s.

The monomial features of degree d = 2 applied to X give

X =

(
x11 x12 · · · x1s

x21 x22 · · · x2s

)
7→ Φd(X) =


1 1 . . . 1
x11 x12 · · · x1s

x21 x22 · · · x2s

x11x21 x12x22 · · · x1sx2s

x2
11 x2

12 · · · x2
1s

x2
21 x2

22 · · · x2
2s

 .

We observe that Φd(X) is rank deficient since a>Φd(X) = 0.

54

More generally, suppose the algebraic variety V (P) ⊂ Rn is defined by the set of

linearly independent polynomials P = {p1, . . . , pq}, where each polynomial pi is at most

of degree d. Let x1, . . . , xs denote the columns of X ∈ Rn×s, then

xi ∈ V (P) for all i = 1, . . . , s if and only if Φd(X)>C = 0, (3.16)

where the columns of C ∈ RN×q define the coefficients of the polynomials p1, . . . , pq in

the monomial basis. Thus,

rank(Φd(X)) ≤ min(N − q, s). (3.17)

This ensures that Φd(X) is rank deficient when X follows an algebraic variety model of

degree d, provided that s > N − q.
The dimension of the lifted space N(n, d) is approximately exponential in d, since

(n+ d)!/n!d! ≥ nd/d!. Therefore, a kernel implementation is usually used in practice for

moderate and large values of n, or more precisely, whenever s ≤ N(n, d). The monomial

kernel of degree d is defined as

Kd : Rn×s × Rn×s → Rs×s : (X, Y) 7→ (X>Y + c1s×s)
�d, (Monomial kernel)

where the value c ∈ R is a parameter of the kernel, 1s×s is a square matrix of size s

full of ones and � is an entry-wise exponent. If the equations describing the algebraic

variety are known to be homogeneous, one can set c = 0. Note that the monomial

kernel satisfies Kd(X,X) = Φ̃d(X)>Φ̃d(X) for map of monomials Φ̃d with non-unitary

coefficients. Therefore, Φd(X) and Kd(X,X) have the same rank.

3.2.3 Union of subspaces

The second case study presents a union of subspaces as a particular type of algebraic

variety.

Case study 2 (Union of subspaces). Given two affine subspaces S1, S2 ⊂ Rn of dimen-

sion r1 and r2 respectively, we can write S1 = {x ∈ Rn : qi(x) = 0 for i = 1, . . . , n− r1}
and S2 = {x ∈ Rn : pj(x) = 0 for j = 1, . . . , n− r2} where the qi and pj are affine func-

tions. The union S1∪S2 can be expressed as the set where all possible products qi(x)pj(x)

vanish. Therefore, S1 ∪ S2 is the solution of a system of (n− r1)(n− r2) quadratic poly-

nomial equations. Similarly, a union of ` affine subspaces of dimensions r1, . . . , r` is an

algebraic variety described by a system of Π`
i=1(n− ri) polynomial equations of degree `.

The rank of the monomial features is difficult to estimate a priori. It depends on the

degree d and the intrinsic dimension of the variety. The following result gives an upper

bound when the matrix X follows the union of subspaces model.

55

Proposition 3.1 (Rank of monomial features (Ongie et al., 2017)). If the columns of a

matrix X ∈ Rn×s belong to a union of ` affine subspaces each of dimension at most κ,

then for all d ≥ 1, the matrix Φd(X) ∈ RN(n,d)×s of monomial features satisfies

rank Φd(X) ≤ `

(
κ+ d
d

)
,

with N(n, d) the dimension of the feature space (3.14).

The next example shows the rank of the monomial features and kernel for a matrix

whose columns belong to a union of subspaces.

Example 3.2. Consider X ∈ R10×100 following a union of subspaces model (Case study 2).

The columns of X are divided across 5 subspaces of dimension 2 in R10, with 20 points

on each subspace. Hence, the matrix X has full rank, rank(X) = 10. Computing the

monomial features of degree d = 2 gives Φ2(X) ∈ R66×100 with rank(Φ2(X)) = 26. The

monomial kernel K2(X,X) ∈ R100×100 has the same rank. Figure 3.2 shows the singular

values of Φ2(X) and K2(X,X) in logarithmic scale. The bound from Proposition 3.1

applied to this example gives rank(Φ2(X)) ≤ 30.

0 10 20 30 40 50 60 70
10

-20

10
-15

10
-10

10
-5

10
0

10
5

0 10 20 30 40 50 60 70 80 90 100
10

-20

10
-15

10
-10

10
-5

10
0

10
5

Figure 3.2: Singular values of the monomial maps for a union of subspaces

Choice of the degree d Choosing the degree d of the monomial kernel for a given

problem is a nontrivial task. In Section 4.6, we discuss the practical choice of this degree,

how it impacts the rank of the feature matrix and the possibility to recover a matrix whose

columns belong to a union of subspaces. Previous works using the monomial kernel to

recover high-rank matrices all restricted themselves to degrees two or three (Ongie et al.,

2017; Fan and Chow, 2018). Using monomial features of a larger degree seems helpful

to capture all the nonlinearity in some data sets. In particular, the union of d subspaces

is an algebraic variety of degree d. Unfortunately, increasing the degree implies that the

56

dimension of the optimization problem grows exponentially. Indeed, the lifted dimension

N(n, d) ≈ nd/d! blows up with d for even moderate values of n. Using the monomial

kernel, which belongs to Rs×s, does not solve this issue entirely, even though the dimension

N(n, d) does not appear explicitly. Recovery of M ∈ Rn×s requires Φd(M) to be rank

deficient, which only happens if s > N(n, d) − q, where q is the number of polynomial

equations that define the algebraic variety (Equation (3.17)). If rank(Φd(M)) = N(n, d),

for any s > N(n, d), the monomial kernel is rank deficient at M but also at every

X ∈ Rn×s, which gives no hope of recovery. In short, choosing a larger degree increases

the dimension of the feature space N(n, d), which in turn increases the number of columns

necessary for the recovery to be possible, in order to satisfy s > N(n, d)− q.

3.2.4 Clustering and the Gaussian kernel

We now define the Gaussian kernel, whose use for clustering with missing data is novel

in the context of nonlinear matrix recovery.

Case study 3 (Clusters). For X, Y ∈ Rn×s, the entry (i, j) of the Gaussian kernel

Kσ : Rn×s × Rn×s → Rs×s is defined as

Kσ(X, Y)ij = e
−
‖xi − yj‖2

2

2σ2 , (Gaussian kernel)

where the parameter σ > 0 is the width of the kernel. The Gaussian kernel acts as a

proximity measure. For two columns of X ∈ Rn×s, labelled xi and xj, we observe that

Kσ(X,X)ij ≈ 1 if xi is close to xj, and Kσ(X,X)ij ≈ 0 if xi is far from xj. Therefore,

the Gaussian kernel is close to a low-rank matrix whose rank is the number of clusters

formed by the columns of X, as illustrated in Figure 3.3. The value of σ should be chosen

appropriately depending on the size of the clusters (Singer, 2006). The Gaussian kernel

is a representation of features that belong to an infinite dimensional Hilbert space.

X

Kσ(X,X) =

≈ 1

≈ 1

≈ 0

≈ 0

Figure 3.3: The Gaussian kernel on clustered data

57

In Figure 3.4, we present a randomly generated data set X ∈ R2×100 divided into two

clusters, along with the singular values of the Gaussian kernel in logarithmic scale. We

see that the two largest singular values are much greater than the third one, and that the

following singular values decay at an approximately exponential rate. This behaviour is

observed for an arbitrary number of clusters, namely, σnc(Kσ(M))� σnc+1(Kσ(M)) for nc

clusters. In Case study 1 and 2, the rank of the monomial features can be unambiguously

determined by looking at the graph of singular values. In the case of clusters, the rank

of the Gaussian kernel is better replaced by the ε-rank of a matrix, as defined in (Golub

and Van Loan, 1996, Section 2.5.5) by

rankε(A) = min
‖A−B‖2≤ε

rank(B). (3.18)

The ε-rank of a matrix A ∈ Rs×s can be determined using the fact that

σ1(A) ≥ σrankε(A) > ε ≥ σrankε(A)+1 ≥ · · · ≥ σs(A).

The example in Figure 3.4 gives convincing evidence that when the columns of X are

divided in nc clusters, the matrix Kσ(X,X) has ε-rank equal to nc for an appropriate

value of ε (around one in the figure). For low-rank matrix completion, Vandereycken

(2013) describes a rank adaptive strategy to recover matrices with exponentially decaying

singular values, which we apply to the kernel matrix Kσ in Chapter 4. In (Fan and

Cheng, 2018), the Gaussian kernel was also used on image inpainting and image denoising

problems.

-5 0 5 10
-8

-6

-4

-2

0

2

4

6

X

0 20 40 60 80 100
10

-20

10
-15

10
-10

10
-5

10
0

10
5

singular values of K(X,X)

Figure 3.4: Clustered data and the singular values of the Gaussian kernel in log-scale.

3.2.5 Related work

We survey the existing literature on nonlinear matrix recovery, and begin in chronological

order. Consider a matrix M ∈ Rn×s whose columns as vectors in Rn belong to a union of

58

` linear subspaces, each of dimension at most κ strictly smaller than n. Let us consider

the problem of recovering M from a subset of its entries. This setting generalizes low-rank

matrix completion where ` = 1 and all the columns of M belong to a single subspace.

In the case of ` subspaces, it is expected that rank(M) = `κ. It is known that low-rank

matrix completion is proven to be successful at recovering a rank r matrix from only

O(rs log2 s) entries (assuming n ≤ s) (Recht, 2011), which becomes Cs`κ log2(s) for a

union of subspaces. This means that nearly all the entries of the matrix are required if

M is high-rank, i.e., `κ is close to n. Applying low-rank matrix completion methods is

therefore inefficient when the number of subspaces ` is large.

In (Eriksson et al., 2012), the authors propose an algorithm that exploits the union

of subspace structure of the problem described above. In several steps, they identify the

subspaces by localized low-rank matrix completion subproblems. They show that each

column of M can be recovered with high probability if the number of entries observed

is greater than Csκ log2(n). The constant C > 1 depends on an incoherence condition

and the geometrical arrangement of the subspaces. This is better than the necessary

Cs`κ log2(s) which low-rank matrix completion requires, especially when the number of

subspaces ` is large.

The recovery of a matrix whose columns belong to a union of subspaces is equivalent to

subspace clustering with missing data. Given a matrix X ∈ Rn×s for which each column

xi ∈ Rn belongs to one of ` subspaces in Rn, subspace clustering consists in learning the

subspaces from X and assigning each xi to its corresponding subspace. With access to all

the entries in X, subspace clustering can be solved with high probability (Lerman et al.,

2011).

The concept of completing a high-rank matrix was generalized simultaneously in (Ongie

et al., 2017) and (Fan and Chow, 2018) with the introduction of a feature map. In (Ongie

et al., 2017), the applications go beyond union of subspaces as the authors consider ma-

trices whose columns belong to an algebraic variety. In essence, Fan and Chow (2018)

and Ongie et al. (2017) apply different minimization algorithms to{
min
X
‖Φd(X)‖pSp
Xij = Mij, (i, j) ∈ Ω,

(3.19)

where ‖.‖Sp is the Schatten-p quasi-norm defined as

‖Φd(X)‖Sp =

min(N,s)∑
i=1

σi(Φd(X))p

1/p

for 0 < p ≤ 1.

When p = 1, the sum of the singular values is the nuclear norm, which extends Prob-

lem (3.4) to the nonlinear case. The Schatten p-norm for 0 < p ≤ 1 is nonsmooth. This

59

has the benefit of encouraging sparsity in the singular values, but it might prevent fast

convergence near a minimizer. Both Fan and Chow (2018) and Ongie et al. (2017) use a

kernel representation of the features, so that the features are never computed explicitly.

In (Fan and Cheng, 2018), a quasi-Newton method is used to minimize (3.19).

Ongie et al. (2017) propose a nonlinear extension of an iterative reweighted least

squares scheme, introduced for low-rank matrix completion in (Mohan and Fazel, 2012).

Using the fact that

‖Φd(X)‖Sp = trace (Kd(X,X)W) with W = Kd(X,X)
p
2
−1, (3.20)

the strategy is to approximately minimize (3.20) where W is treated as a constant, then

update W separately, and repeat the process until convergence. This gives, for k =

1, 2, . . .

Wk = (Kd(Xk, Xk) + γkI)
p
2
−1

Xk+1 = arg min
X

trace(Kd(X,X)Wk) such that Xij = Mij, (i, j) ∈ Ω, (3.21)

where γk is a smoothing parameter, which is included to improve numerical stability;

this is equivalent to minimizing a smooth approximation of the Schatten-p norm (Mohan

and Fazel, 2012). At each iteration, Ongie et al. (2017) performing one gradient step

to approximately minimize (3.21). The authors present numerical results where this

algorithm is applied to synthetic data, and demonstrate that their algorithm significantly

outperforms traditional low-rank matrix completion methods to recover matrices whose

columns belong to a union of subspaces. They numerically characterize the sampling

regime and number of subspaces for which their algorithm gives successful recovery.

In (Fan et al., 2019) a truncated version of the Schatten norm is proposed, where only

the smallest singular values are minimized:min(N,s)∑
i=r+1

σi(Φd(X))p

1/p

for 0 < p ≤ 1,

where r = rank(Φd(M)). They use the kernel trick and propose an algorithm which

alternates between a truncated singular value decomposition of the kernel matrix and a

step of the stochastic gradient method. In (Fan et al., 2020), the authors propose an

extension to handle outliers in the data. This is achieved by decomposing M as the sum

of a matrix who follows a union of subspaces model and a sparse matrix which absorbs

the outliers. The method proposed in (Fan and Cheng, 2018) replaces the monomial

kernel by a deep neural network who is trained to minimize the reconstruction error for

the observable entries of M . This work showcases the applicability and performance of

60

nonlinear matrix completion with numerous examples including image inpainting and col-

laborative filtering problems. For data drawn from multiple subspaces, Fan et al. (2018)

propose a sparse factorization where each subspace is represented in a low rank decom-

position. They solve this model with an alternating minimization algorithm in the spirit

of the Proximal Alternating Linearized Minimization (Bolte et al., 2013). In (Fan and

Udell, 2019), the authors propose a kernel factorization algorithm for matrix completion,

which lends itself to online completion. In this setting, the columns of the matrix M are

accessible as a stream and the matrix M is never stored in its entirety. They also develop

a variant to deal with out of samples extensions, that is, how to complete a new column

without recomputing the model. The offline formulation applies the kernel trick to
min
X,D,Z

‖Φd(X)− Φd(D)Z‖2
F + α ‖Φd(D)‖2

F + β ‖Z‖2
F

Xij = Mij, (i, j) ∈ Ω,

D ∈ Rn×r, Z ∈ Rr×s, X ∈ Rn×s.

The variable D ∈ Rn×r aims to find r points in Rn whose features form a basis for Φd(M)

in the feature space. The last two terms in the objective are added as regularizers to

improve the practical performances of the algorithm, as is common in low-rank matrix

completion (Davenport and Romberg, 2016).

In (Ongie et al., 2021), the authors build a tensor representation of the data and

apply known matrix completion techniques in the tensor space. For this algorithm, they

are able to show that the sampling requirements nearly match the information theoretic

lower bounds for recovery under a union of subspace model. This is remarkable as the

sampling pattern in the tensor space is not random, and low-rank recovery results do not

apply directly. Note that the approach in (Ongie et al., 2021) is only applicable to matrix

completion problems, not matrix sensing.

In the next chapter, we aim to contribute to this literature by looking at new problem

formulations, novel applications of algorithms to this problem and new use cases.

61

Chapter 4

Nonlinear matrix recovery on the
Grassmann manifold

Our work in this chapter is based on the recent discovery that an extension of traditional

methods for low-rank matrix recovery allows to recover specific classes of high-rank ma-

trices. This problem, known as nonlinear matrix recovery (or high-rank matrix recovery),

is introduced in Section 3.2 where the concepts of feature space and case studies are pre-

sented. The methods in this chapter are general, and in particular applicable to Case

studies 1, 2 and 3, which refer to matrices whose columns belong to an algebraic variety,

a union of subspaces and several clusters, respectively.

In Section 4.1, we propose a new formulation to solve the nonlinear matrix recov-

ery problem. The rank minimization in (3.13) is replaced by a nonconvex constrained

optimization problem on the Grassmann manifold. This extends the residual proposed

by Eftekhari et al. (2019) in the context of low-rank matrix completion to the nonlinear

case. The derivatives of the cost function for this residual and specific kernel maps are

computed in Section 4.1.2. In Section 4.2, we propose to use Riemannian optimization

methods to solve the recovery problem, which is new in the context of nonlinear matrix

recovery. Riemannian optimization, as described in Chapter 2, provides a framework to

design algorithms for problems with smooth constraints. This allows to seamlessly choose

between standardized first- and second-order methods. The use of second-order methods

allows to recover high-rank matrices up to high accuracy if desired. Section 4.3 presents

an alternating minimization algorithm to solve the recovery problem. First- and second-

order variants of the alternating minimization are discussed. We prove global convergence

of the alternating minimization to first-order stationary points in Section 4.4 and give a

global complexity bound on the number of iterations necessary to achieve an arbitrary

accuracy on the gradient norm from an arbitrary initial guess. In Section 4.4.2, we also

show convergence of the sequence of iterates to a unique limit point using the Kurdyka-

Lojasiewicz property. Our alternating minimization method is a similar approach to the

62

method proposed in (Fan et al., 2019), which does not provide a convergence analysis. We

conclude with an extensive set of numerical experiments that compare the performances

of the optimization approaches and the quality of the solutions that can be obtained

(Section 4.6). We discuss the influence of the complexity of the data and the role of

model parameters on the recovery. Moreover, we showcase that our approach is efficient

at clustering with missing information (a novel application of nonlinear matrix recovery)

and dealing with noisy measurements.

We summarize the different elements which compose the nonlinear matrix recovery

problem in the next two diagrams. This acts as a roadmap of the chapter. When the

matrix M to be recovered belongs to Case study 1 or 2, we use the monomial features

or monomial kernel. When the matrix M belongs to Case study 3, we use the Gaussian

kernel. When a feature map is used, we solve problem formulation (4.1), introduced in

Section 4.1. If a kernel is used instead, we solve problem (4.4).

Data Struture
in matrix M

Algebraic varieties (e.g. Union of subspaces)

Case studies 1 and 2

Lift

Monomial features
Formulation (4.1)

Monomial kernel
Formulation (4.4)

Clusters
Case study 3

Lift

Gaussian kernel
Formulation (4.4)

In addition, one needs to choose an algorithm to solve (4.1) or (4.4). We propose two

families of algorithms: Riemannian trust-regions (Algorithm 2) and Alternating mini-

mizations (Algorithm 4). Each of these algorithms have first- and second-order variants.

Algorithm

Riemannian trust-region
(Algorithm 2)

Alternating minimization
(Algorithm 4)

first-order second-orderfirst-order second-order

63

4.1 Nonlinear matrix recovery as an optimization prob-

lem

We continue from the problem description in Section 3.2.1 and present a new formulation

to solve the nonlinear matrix recovery problem. The notations and set up here are

precisely as in Section 3.2.1, we use Φ(X) to denote a feature matrix (Equation (3.11))

and the linear measurements on a matrix M ∈ Rn×s are represented by an operator

A : Rn×s → Rm and vector b ∈ Rm (Equation (3.1)), in which the matrices A1, . . . , Am ∈
Rn×s may represent matrix completion or dense matrix sensing.

Noiseless measurements case Consider Equation (3.13), the rank minimization of

the feature matrix under exact measurement constraints. We assume that r = rank(Φ(M))

is known and smaller than min(N, s). As a nonconvex approximation to (3.13), we con-

sider formulation (3.10) based on (Balzano et al., 2010; Boumal and Absil, 2015; Eftekhari

et al., 2019), designed for online low-rank matrix completion, and extend it to the non-

linear case. This leads to the following formulation:
min
X,U

f(X,U) := ‖Φ(X)− PUΦ(X)‖2
F

U ∈ Grass(N, r)

A(X) = b,

(4.1)

where Grass(N, r) is the Grassmann manifold, the set of all subspaces of dimension r in

RN , PU is the orthogonal projection on the subspace U and ‖.‖F denotes the Frobenius

norm. Given U ∈ St(N, r) such that range(U) = U , the projection is given by PU = UU>.

The residual in (4.1) attempts to find an r-dimensional subspace in RN such that the span

of Φ(X) belongs to that subspace, effectively limiting the rank of Φ(X) to r. In (4.1), the

objective function is expected to be nonconvex but smooth for practical choices of Φ, such

as Case study 1, 2 and 3. If the variable U is additionally constrained to be the range of

the r leading singular vectors of Φ(X), the cost function becomes
∑min(N,s)

i=r+1 σi(Φ(X))2. It

is interesting to wonder how the formulation performs if the rank is over-estimated – be

it purposefully or not. Intuitively, estimating the subspace U from the r+ r′ > r leading

singular vectors of Φ(X) could bring some robustness. In the numerical section 4.6, we try

overestimating the rank with disappointing results, which indicates that such approach

would probably require more care to perform well. The advantage of the formulation

in (4.1) over using singular values is that is it straightforward to express the former as

a finite sum of s terms over the data points. This leaves open the opportunity to use

stochastic subsampling algorithms, which would be helpful in applications with a very

large number of samples.

64

The advantage of using the Grassmann manifold, which is a quotient space, instead

of the Stiefel manifold of orthogonal matrices St(N, r) := {U ∈ RN×r : U>U = Ir} is that

due to the invariance of the cost function with respect to the matrix that represents the

subspace U , local optimizers cannot possibly be isolated in a formulation over St(N, r).

Therefore, the fast local convergence rates of some second-order algorithms might not

apply on St(N, r), while they would apply on the quotient manifold.

Consider U⊥ a basis of U⊥, the orthogonal complement of U in RN . The variable

U⊥ ∈ Grass(N,N − r) has a nice interpretation since, if f(X,U) = 0, then U⊥ spans

null(Φ(X)>), the null space of Φ(X)>. In the case of algebraic varieties (Case study 1),

vectors in null(Φ(X)>) give the coefficients of polynomials defining the algebraic variety

in the basis given by Φ. Recovering the equations of the variety is of interest in some

applications, and we use that observation in Chapter 5.

Noisy measurements case When the measurements are known to be noisy, it is

advisable to relax the constraint A(X) = b to allow for some misfit. We place the

measurement constraint into the cost function as a penalty. This gives{
min
X,U

fλ(X,U) := ‖Φ(X)− PUΦ(X)‖2
F + λ ‖A(X)− b‖2

2

U ∈ Grass(N, r),
(4.2)

where the parameter λ > 0 has to be adjusted. This allows to satisfy the measurements

approximately.

4.1.1 Kernel representation of the features

When using a kernel to represent the feature map, as shown in (3.12), we want to find

a cost function equivalent to (4.1) which uses the kernel matrix instead of the feature

matrix. We find that they are related in the following way.

Proposition 4.1. Given a feature map Φ and the associated kernel K: X × X 7→
Φ(X)>Φ(X), for W ∈ Grass(s, r) we have∥∥Φ(X)> − PWΦ(X)>

∥∥2

F
= trace

(
K(X,X)− PWK(X,X)

)
. (4.3)

Proof. We write PW⊥ = Is×s − PW and find

trace
(

PW⊥K(X,X)
)

= trace
(

PW⊥Φ(X)>Φ(X)
)

= trace
(

Φ(X)PW⊥Φ(X)>
)

= trace
(

Φ(X)P>W⊥PW⊥Φ(X)>
)

= trace
(

(PW⊥Φ(X)>)>PW⊥Φ(X)>
)

=
∥∥PW⊥Φ(X)>

∥∥2

F
.

65

Using the kernel formula (4.3) corresponds to finding a subspace W of dimension r

which contains the row space of Φ(X). When a kernel is used, the following optimization

problem is solved, 
min
X,W

f(X,W) := trace(K(X,X)− PWK(X,X))

W ∈ Grass(s, r)

A(X) = b.

(4.4)

Replacing the features Φ by the corresponding kernel K becomes beneficial when the

dimension N of the features is larger than the number of points s and when a convenient

formula is available to compute the kernel and its derivatives. For example, in the case

of clusters (Case study 3), the features exist implicitly in an infinite dimensional space

and we use the Gaussian kernel to represent them.

In the upcoming sections, we usually describe the algorithms and their properties

using the notation of problem (4.1) with a feature map Φ and cost function f(X,U).

Unless specified otherwise, the developments also apply to problem (4.4) and the use of

a kernel.

4.1.2 Derivatives of the cost function

In this section, we compute the (Euclidean) derivatives of the cost function in Prob-

lem (4.4). For the monomial kernel, we compute first- and second-order derivatives. For

the Gaussian kernel, we compute the first-order derivative. To compute the derivative

of a matrix-valued function, we write a Taylor expansion and identify the gradient by

looking at first-order terms. The proofs can be found in Appendix A.1.

Proposition 4.2. For the monomial kernel Kd (Case study 1 and 2), the Euclidean

gradient of the cost function in (4.4) is given by

∇Xf(X,W) = 2dX (Kd−1(X)� PW⊥) and ∇Wf(X,W) = −2Kd(X)W.

For (∆X ,∆W) ∈ Rn×s × Rs×r, the application of the Hessian is given by

∇2f(X,W)

[
∆X

∆W

]
=

(
∇2
Xf(X,W)[∆X] +∇W∇Xf(X,W)[∇W]
∇X∇Wf(X,W)[∆X] +∇2

Wf(X,W)[∆W]

)
.

where

∇2
Wf(X,W)[∆W] = −2Kd(X)∆W

∇2
Xf(X,W)[∆X] = 2d(d− 1)X

(
Kd−2(X)� (X>∆X + ∆>XX)� PW⊥

)
+ 2d∆X (Kd−1(X)� PW⊥)

∇X∇Wf(X,W)[∆X] = −2d
(
Kd−1(X)� (X>∆X + ∆>XX)

)
W

∇W∇Xf(X,W)[∆W] = −2dX
(
Kd−1(X)� (W∆>W−∆WW

>)
)
.

66

Proposition 4.3. For the Gaussian kernel Kσ (Case study 3), the Euclidean gradient of

the cost function in (4.4) is given by

∇Xf(X,W) = − 2

σ2
X (diag (sum(Kσ � PW⊥ , 1))−Kσ � PW⊥) and ∇Wf(X,W) = −2Kσ(X)W.

where � denotes an entry-wise product and sum(Kσ�PW⊥ , 1) is the vector whose entries

are the sum of each column of the matrix Kσ � PW⊥.

We do not compute the Hessian for the Gaussian kernel. We either use automatic

differentiation (in Python) or finite differences of the gradient (in Matlab).

4.2 Riemannian optimization algorithms

In this section, we investigate the use of Riemannian optimization methods to solve (4.1)

and (4.4). Riemannian optimization methods, which are introduced in Chapter 2, have

proved to be efficient in low-rank matrix completion problems (Vandereycken, 2013;

Boumal and Absil, 2015). In order to formally express (4.1) as a Riemannian optimization

problem, we define a notation for the affine subspace that represents the measurements

on the matrix M ,

LA,b = {X ∈ Rn×s : A(X) = A(M) = b}.

We form the product manifold

M = LA,b ×Grass(N, r), (4.5)

so that Problem (4.1) can be viewed as the unconstrained minimization of a smooth cost

function defined on the manifold M,min
(X,U)

‖Φ(X)− PUΦ(X)‖2
F

(X,U) ∈M.
(4.6)

We introduce the notation z := (X,U) ∈ M to denote the pair of variables that appear

in the optimization problem. The geometry of the set LA,b is rather trivial because it is

affine. Section 2.9.2 describes that LA,b can be viewed as a Riemannian manifold, which

gives a straightforward way to implement optimization methods with affine constraints.

The Riemannian manifold structure of Grass(N, r) is covered in Section 2.9.5. We briefly

recall some of these elements in order to define some notations. At U ∈ Grass(N, r),

choose some U ∈ St(N, r) such that range(U) = U . The tangent space TUGrass(N, r)

can be represented by the horizontal space, denoted by

TUGrass(N, r) = {∆U ∈ RN×r : U>∆U = 0} = range(U⊥).

67

The horizontal space is endowed with the usual inner product from the embedding space

RN×r,

〈∆1,∆2〉U = trace(∆>1 ∆2), ∀∆1,∆2 ∈ TUGrass(N, r).

The norm of a tangent vector ∆U ∈ TUGrass(N, r) is given by the norm of its horizontal

lift ∆U ∈ TUGrass(N, r). Thus, we make sense of the notation

‖∆U‖F := ‖∆U‖F =
√
〈∆U ,∆U〉U , ∀∆U ∈ TUGrass(N, r).

Similarly, for ξ = (∆X ,∆U) ∈ TzM, we write ‖ξ‖F :=
√
‖∆X‖2

F + ‖∆U‖2
F. There exists

several ways to compute a retraction on the Grassmann manifold. We choose the polar

retraction defined in Equation (2.34), which we denote by RU . This allows to define a

retraction on M, as the retraction on LA,b is simply given by RX(∆X) = X + ∆X . The

description of LA,b and Grass(N, r) as Riemannian manifolds (Section 2.9) shows how to

compute the Riemannian gradient and Hessian of a function defined on those sets. The

Euclidean derivatives, which do not take the constraints into account, computed using

the results of Section 4.1.2 or automatic differentiation, are appropriately projected onto

the tangent spaces of M.

Riemannian trust-region (RTR) We apply the Riemannian trust-region (Algorithm 2,

page 33), described in Chapter 2, to Problem (4.1) and (4.4). Recall that, at each iterate

zk ∈M, the Riemannian trust-region minimizes the following model of the cost function

on the tangent space TzkM:

min
η∈TzkM
‖η‖zk≤∆k

m̂zk(η) := f(zk) + 〈η, gradf(zk)〉zk +
1

2
〈η,Hk[η]〉zk ,

where Hk : TzkM → TzkM is a symmetric operator on TzkM, ∆k is the trust-region

radius and the model m̂zk : TzkM→ R is a quadratic approximation of the pullback f̂zk =

f ◦ Rzk , defined on the tangent space at zk ∈ M for some retraction Rzk : TzkM→M.

A first-order version of the algorithm is given by the choice Hk = Id, whereas a second-

order version if obtained with Hk = Hessf(zk) or an approximation of the Hessian. If a

first-order critical point is sought, set εH = ∞. We discuss the implementation of RTR

in Section 4.6. We note that there is no guarantee on the quality of the stationary point,

due to the nonconvexity. Nonetheless, we see in Section 4.6 that the method performs

well in practice for nonlinear matrix recovery.

The Riemannian trust-region also provably converges to second-order critical points

for any initialization under a weak decrease condition in the subproblems and satisfies

global worst-case complexity bounds matching their unconstrained counterparts, as was

shown in (Boumal et al., 2019). These are stated in Theorem 2.8 on page 35, which

68

says that, under A1, A2, A3, A5, A6, A4, A7, first-order RTR finds a point zN1 ∈ M
such that ‖gradf(zN1)‖F ≤ εg in at most O(ε−2

g) iterations and a point zN2 ∈ M such

that ‖gradf(zN2)‖F ≤ εg and λmin(HN2) ≥ −εH in at most O
(
1/ε2

gεH
)

iterations. In

Section 4.5, we detail how the Lipschitz conditions A2 and A3 relate to the smoothness

of the kernel and its derivatives, and discuss the practicality of these assumptions for

problem (4.4) when the monomial and Gaussian kernels are used.

4.3 Alternating minimization algorithms

In this section, departing from the techniques in 4.2, we propose an alternating mini-

mization algorithm to solve (4.1) and (4.4) (Algorithm 4). This comes from the natural

separation of the variables into two blocks X and U , yielding two distinct minimization

subproblems. Alternating minimization type methods have been popular in recent years

to solve large-scale nonconvex problems (Wen et al., 2012; Bolte et al., 2013). This is due

to their good practical performances and ease of implementation, as often one or both of

the subproblems have a closed-form solution. Strictly speaking, this is still a Riemannian

optimization approach, as all iterates are feasible, but this section describes a two-block

coordinate minimization, whereas the previous section was considering both variables as

a single block.

We set the initial guess X0 ∈ Rn×s as any solution of the underdetermined linear

system A(X) = b and U0 as the span of the r leading singular vectors of Φ(X0). The

framework is as follows, for k ≥ 0:

With Uk fixed, solve

Xk+1 =

arg min
X∈Rn×s

‖Φ(X)− PUkΦ(X)‖2
F

A(X) = b.
(4.7)

With Xk+1 fixed, solve

Uk+1 =

arg min
U

‖Φ(Xk+1)− PUΦ(Xk+1)‖2
F

U ∈ Grass(N, r).
(4.8)

This separation of the variables takes advantage of the fact that problem (4.8), even

though nonconvex, is solved to global optimality by computing the r leading left singular

vectors of the matrix Φ(Xk+1). The result is a consequence of the celebrated Eckart-

Young-Mirsky theorem, which gives the best rank r approximation in Frobenius norm of

a matrix by the r leading terms of the singular value decomposition (Eckart and Young,

1936; Mirsky, 1960). In particular, let Φ(Xk+1) =
∑min(N,s)

i=1 σiuiv
>
i , then

Uk+1 = span(u1, . . . , ur) (4.9)

69

is a global minimizer of (4.8). Note that the solution need not be unique, in the case where

σr = σr+1. The truncated singular value decomposition (4.9) is denoted by truncate_svd

in Algorithm 4. The singular vectors can be obtained from the singular value decompo-

sition, which can be computed in O(max(N, s)3) operations. Its numerical accuracy

depends on the distribution of the singular spectrum, as described in (Demmel et al.,

1999).

Problem (4.7) is in general hard to solve to global optimality. The difficulty comes

from the nonconvexity of the cost function, which is due to Φ. One can choose from

a variety of first- or second-order methods to find an approximate first-or second-order

critical point. We present the numerical merits of both possibilities in Section 4.6.

i) First-order version of alternating minimization When only gradient informa-

tion is available, a first-order method is used to minimize subproblem (4.7). For the sake

of illustration, in Algorithm 4 we present a projected gradient descent with line search

for (4.7). The gradient of the cost function with respect to X is projected onto the null

space of A. This ensures that the iterates remain in the feasible set LA,b. The line search

is a classical backtracking with an Armijo condition for sufficient decrease. Variants in

the line search or even constant step sizes are possible.

ii) Second-order version of alternating minimization In subproblem (4.7), it is

possible to use a second-order method to speed up the local convergence and reach a

higher accuracy. We apply the RTR on the affine manifold LA,b, where the quadratic

model uses Hk = PTLA,b(∇2
XXf(Xk,Uk)), the Hessian of the cost function in X restricted

to the tangent space.

Algorithm 4 details a first-order version of the alternating minimization method, where

gradient descent with an Armijo line search, a standard inexact procedure in nonconvex

optimization, is applied to subproblem (4.7). The Armijo line search is described in

Algorithm 5.

iii) Accuracy of the subproblems solution Algorithm (4) alternatively solves sub-

problems (4.7) and (4.8). For the solution of (4.7), there is no incentive to solve to high

accuracy early on in the run of the algorithm, as we could still be far from convergence

and the variable U might still change a lot. At iteration k, we use the following stopping

criterion:

‖gradXf(Xk+1,Uk)‖F ≤ εx,k for some εx,k > 0.

70

Algorithm 4 Alternating minimization scheme for Problem (4.1) and (4.4)

1: Given: The sensing matrix A ∈ Rm×ns, measurements b ∈ Rm, tolerances εu ≥
0, εx ≥ 0, an estimation of r = rank(Φ(M)).

2: Set k = 0
3: Find X0 that satisfies AX0 = b
4: U0 = truncate_svd(Φ(X0)) . Equation (4.9)
5: while ‖gradXf(Xk,Uk)‖F > εx or ‖gradUf(Xk,Uk)‖F > εu do

6: Set X
(0)
k = Xk, i = 0

7: Choose εx,k using Equation (4.10) or (4.11)

8: while
∥∥∥gradXf(X

(i)
k ,Uk)

∥∥∥
F
> εx,k do

9: gradXf(X
(i)
k ,Uk) = PTLA,b

(
∇Xf(X

(i)
k ,Uk)

)
. Equation (2.22)

10: α
(i)
k = Armijo

(
(X

(i)
k ,Uk),−gradXf(X

(i)
k ,Uk)

)
. Algorithm 5

11: X
(i+1)
k = X

(i)
k − α

(i)
k gradXf(X

(i)
k ,Uk)

12: i = i+ 1
13: end while
14: Xk+1 = X

(i)
k

15: if ‖gradUf(Xk+1,Uk)‖F ≤ εu then
16: Uk+1 = Uk
17: else
18: Uk+1 = truncate_svd(Φ(Xk+1))
19: end if
20: k = k + 1
21: end while
22: return (Xk,Uk) such that ‖gradf(Xk,Uk)‖F ≤ εu + εx.

Algorithm 5 Armijo(zk, dk): Line search with Armijo condition

INPUT: Function f and gradient gradXf , current iterate (X
(i)
k ,Uk) and a descent di-

rection dk such that 〈gradXf(X
(i)
k ,Uk), dk〉 < 0, a sufficient decrease coefficient β ∈]0, 1[,

initial step α0 > 0 and τ ∈]0, 1[.

OUTPUT: Step size α
(i)
k .

1: Set α = α0.
2: while f(X

(i)
k + αdk,Uk) > f(X

(i)
k ,Uk) + βα〈gradXf(X

(i)
k ,Uk), dk〉 do

3: α = τα.
4: end while
5: Set α

(i)
k = α.

71

We propose the two following strategies for the choice of εx,k,

εx,k = εx for all k, (4.10)

or

εx,k = max (εx, θ ‖gradXf(Xk,Uk)‖F) for some user-chosen 0 < θ < 1. (4.11)

To solve (4.8), it is possible to use a randomized SVD procedure. The randomized SVD

is a stochastic algorithm that approximately computes the singular value decomposition

of a matrix that exhibits a low-rank pattern (Halko et al., 2011). The matrix must be low

rank or have a fast decay in its singular values for the random SVD to be accurate. As

the iterates Xk converge towards the solution M , the matrix Φ(Xk), for which we have

to compute an SVD, becomes low-rank and therefore, it is natural to use a randomized

SVD in Algorithm 4. In the early iterations, for a random starting point of the algorithm,

the feature matrix Φ(X0) is not expected to be low-rank and the random SVD should

not be used. When the matrix Φ(Xk) is approaching a low-rank matrix, we can apply

power iterations to make the singular values decrease faster. This makes the randomized

decomposition more costly, but improves the accuracy of the randomized SVD.

Our strategy is as follows, choose two parameters 0 < τ1 � τ2 < 1. As long as

f(Xk+1,Uk) > τ2, use an exact SVD algorithm, without randomization. When τ1 <

f(Xk+1,Uk) ≤ τ2, the energy of Φ(Xk+1) is approximately contained in the span of Uk
which has dimension r. We use a randomized SVD, which we start up with a step of the

power method to improve the accuracy. When f(Xk+1,Uk) ≤ τ1, the matrix Φ(Xk+1) is

close enough to a low-rank matrix to use a randomized SVD without a power iteration.

4.4 Convergence of the alternating minimization al-

gorithm

In this section we present convergence results for Algorithm 4. We consider a first-order

version where subproblem (4.7) is minimized using gradient descent and the Armijo back-

tracking line search (Algorithm 5). We first show asymptotic convergence of the gradient

norms to zero. We also give a worst-case global complexity bound on the number of

iterations necessary to achieve a small gradient from an arbitrary initial starting point.

Note that we chose the Armijo line search for the sake of example, and minor adjust-

ments to the proofs below allow to prove similar results for other minimization methods

in subproblem (4.7). The convergence analysis of Algorithm 4 relies on the following

assumption.

72

A8. There exist constants Lx and Lu (which are both independent of X and U) such that

for all z = (X,U) ∈ M, the pullback f̂z = f ◦ Rz has a Lipschitz continuous gradient in

X and U , with constants Lx and Lu, respectively. That is, for all (ηx, ηu) ∈ TzM,

|f ◦ Rz(ηx, 0)− [f(X,U) + 〈gradXf(X,U), ηx〉]| ≤
Lx
2
‖ηx‖2

F (4.12)

and

|f ◦ Rz(0, ηu)− [f(X,U) + 〈gradUf(X,U), ηu〉]| ≤
Lu
2
‖ηu‖2

F . (4.13)

In other words, this means that, in each variable, the pullback is well approximated in a

uniform way by its first-order Taylor approximation.

Remark 4.1. Note that if A2 holds, then A8 holds with Lx = Lu = Lg.

4.4.1 Global convergence results

We carry on with the convergence analysis of Algorithm 4. The next lemma adapts the

classical descent lemma for the SVD step.

Lemma 4.4. (Descent lemma based on (Boumal et al., 2019, Theorem 4)) Let f : M→ R
be such that A8 holds and f(z) ≥ f ∗ for all z ∈M. Then, for any k ≥ 0,

f(Xk+1,Uk)− f ∗ ≥
1

2Lu
‖gradUf(Xk+1,Uk)‖2

F .

where Lu is the Lipschitz constant of the gradient of the pullback (A8) and f ∗ is the lower

bound of f (A1).

Proof. We follow the development of (Boumal et al., 2019, Theorem 4). By Lipschitz

continuity of the gradient we have,

|f (Xk+1,RUk(η))− [f(Xk+1,Uk) + 〈gradUf(Xk+1,Uk), η〉]| ≤
Lu
2
‖η‖2

F ∀η ∈ TUGrass(N, r).

Let η = −gradUf(Xk+1,Uk)/Lu and define U+ = RUk(−gradUf(Xk+1,Uk)/Lu), which

gives

f(Xk+1,U+) ≤ f(Xk+1,Uk) + 〈gradUf(Xk+1,Uk),−gradUf(Xk+1,Uk)/Lu〉

+
Lu
2
‖−gradUf(Xk+1,Uk)/Lu‖2

F

≤ f(Xk+1,Uk)−
1

2Lu
‖gradUf(Xk+1,Uk)‖2

F .

We conclude that

f(Xk+1,Uk)− f ∗ ≥ f(Xk+1,Uk)− f(Xk+1,U+) ≥ 1

2Lu
‖gradUf(Xk+1,Uk)‖2

F .

73

Given two consecutive iterates Xk and Xk+1 of Algorithm 4, we denote the interme-

diate iterates by

Xk = X
(0)
k , X

(1)
k , X

(2)
k , . . . , X

(nk)
k = Xk+1,

where nk ≥ 0 is the number of gradient steps between Xk and Xk+1. The next lemma

gives upper and lower bounds on the step sizes returned by the Armijo line search. This is

a standard result for line search methods (Nocedal and Wright, 2006) where the constraint

A(X) = b is added.

Lemma 4.5. Under A8, for the direction −gradXf(X
(i)
k ,Uk) ∈ TLA,b, Algorithm 5 re-

turns a step size α
(i)
k that satisfies

α := min

{
α0,

2τ(1− β)

Lx

}
≤ α

(i)
k ≤ α0

and ensures the following decrease

f(X
(i)
k ,Uk)− f(X

(i+1)
k ,Uk) ≥ βα

∥∥∥gradXf(X
(i)
k ,Uk)

∥∥∥2

F
, (4.14)

where X
(i+1)
k = X

(i)
k − α

(i)
k gradXf(X

(i)
k ,Uk).

Proof. It is clear from the line search that α
(i)
k ≤ α0. For any α > 0, Lipschitz continuity

of the gradient in X (A8) gives

f
(
X

(i)
k − αgradXf(X

(i)
k ,Uk),Uk

)
≤ f(X

(i)
k ,Uk)− α

∥∥∥gradXf(X
(i)
k ,Uk)

∥∥∥2

F

+ α2Lx
2

∥∥∥gradXf(X
(i)
k ,Uk)

∥∥∥2

F
.

Hence the Armijo condition (4.14) is satisfied whenever

−α
∥∥∥gradXf(X

(i)
k ,Uk)

∥∥∥2

F
+ α2Lx

2

∥∥∥gradXf(X
(i)
k ,Uk)

∥∥∥2

F
≤ −αβ

∥∥∥gradXf(X
(i)
k ,Uk)

∥∥∥2

F
,

which simplifies to

α ≤ 2(1− β)

Lx
=: αmax.

If α0 satisfies Armijo, then α
(i)
k = α0. Otherwise, we have α

(i)
k = ταl where αl > αmax is

the last α that does not satisfy Armijo and αl+1 = ταl satisfies Armijo. In this case we

have α
(i)
k ≥ ταmax =

2τ(1− β)

Lx
.

We are now ready to prove global convergence of the alternating minimization algo-

rithm.

74

Theorem 4.6 (Global convergence for Alternating minimization). Let A8 hold for f : M→
R from (4.1) or (4.4). Let εx = 0, εu = 0 and use Equation (4.11) to set εx,k. For any

starting point (X0,U0) ∈M, Algorithm 4 produces a sequence
(
Xk,Uk

)
k∈N

such that

lim
k→∞
‖gradf(Xk,Uk)‖F = 0. (4.15)

Proof. First note that f is bounded below by f∗ = 0. For any k ≥ 0,∥∥(gradXf(Xk,Uk), gradUf(Xk,Uk)
)∥∥

F
≤ ‖gradXf(Xk,Uk)‖F + ‖gradUf(Xk,Uk)‖F

= ‖gradXf(Xk,Uk)‖F (4.16)

since εu = 0. Given that each step is non-increasing,

f(Xk,Uk)− f(Xk+1,Uk+1) ≥ f(Xk,Uk)− f(Xk+1,Uk)

≥ f(Xk,Uk)− f(X
(1)
k ,Uk)

≥ βα
(0)
k ‖gradXf(Xk,Uk)‖2

F

≥ βα ‖gradXf(Xk,Uk)‖2
F ,

where we used the Armijo decrease from Lemma 4.5. Summing over all iterations gives

a telescopic sum on the left-hand side. For any k̄ ≥ 0,

f(X0,U0)− f ∗ ≥ f(X0,U0)− f(Xk̄,Uk̄) ≥ βα
k̄∑
k=0

‖gradXf(Xk,Uk)‖2
F .

The series is convergent since it is bounded independently of k̄. Letting k̄ → ∞ gives∑∞
k=0 ‖gradXf(Xk,Uk)‖2

F <∞ and therefore

lim
k→∞
‖gradXf(Xk,Uk)‖F = 0.

We have ‖gradUf(Xk,Uk)‖F = 0 for all k ≥ 0 since εu = 0. This corresponds to taking

exact singular value decompositions. Taking k →∞ in (4.16) gives (4.15).

Theorem 4.7 (Global complexity for Alternating minimization). Let A8 hold for f : M→
R from (4.1) or (4.4). Let εx > 0, εu > 0 and εx,k be given by (4.10) or (4.11). For any

starting point z0 = (X0,U0) ∈ M, Algorithm 4 produces a sequence
(
Xk,Uk

)
k∈N

such

that ∥∥∥(gradXf(Xk,Uk), gradUf(Xk,Uk)
)∥∥∥

F
≤ εx + εu,

is achieved using at most Ngrad gradient steps and Nsvd singular value decompositions

with

Ngrad ≤
f(z0)− f∗
αβε2

x

and Nsvd ≤
2Lu(f(z0)− f∗)

ε2
u

,

where α := min{α0, 2τ(1 − β)/Lx} is a constant depending on parameters of the line

search (Algorithm 5).

75

Proof. Note that f is bounded below by f∗ = 0. Due to Theorem 4.6, there exists Niter <

∞ that gives the number of iterations performed by Algorithm 4, i.e, the smallest k such

that ‖gradXf(Xk,Uk)‖F ≤ εx and ‖gradUf(Xk,Uk)‖F ≤ εu. Let Nsvd be the number of

singular value decompositions that have to be performed to reach ‖gradUf(Xk+1,Uk)‖F ≤
εu, at which point the algorithm would return without performing another computation.

For any k ≤ Nsvd, from Lemma 4.4 we have

f(Xk+1,Uk)− f∗ ≥
1

2Lu
‖gradUf(Xk+1,Uk)‖2

F ≥
1

2Lu
ε2
u.

Summing from k = 0 to Nsvd gives,

f(z0)− f∗ ≥ f(z0)− f(zNsvd) ≥
Nsvd∑
k=0

ε2
u

2Lu
=
ε2
uNsvd

2Lu
.

Hence, this bounds the number of SVD to ensure ‖gradUf(Xk+1,Uk)‖F ≤ εu, as

Nsvd ≤ 2Lu
(f(z0)− f∗)

ε2
u

.

For 0 ≤ i ≤ nk − 1, we have
∥∥∥gradXf(X

(i)
k ,Uk)

∥∥∥2

F
≥ ε2

x,k by definition since the stopping

criterion is
∥∥∥gradXf(X

(nk)
k ,Uk)

∥∥∥
F
≤ εx,k. Combined with the Armijo decrease this gives

f(X
(i)
k ,Uk)− f(X

(i+1)
k ,Uk) ≥ α

(i)
k β

∥∥∥gradXf(X
(i)
k ,Uk)

∥∥∥2

F
≥ α

(i)
k βε

2
x,k. (4.17)

We sum these bounds for the nk gradient steps from Xk to Xk+1,

nk−1∑
i=0

[
f(X

(i)
k ,Uk)− f(X

(i+1)
k ,Uk)

]
≥

nk−1∑
i=0

α
(i)
k βε

2
x,k.

Using that the step sizes α
(i)
k are bounded below by α = τ(1− β)/Lx (Lemma 4.5),

f(Xk,Uk)− f(Xk+1,Uk) ≥ nkαβε
2
x,k ∀k.

The SVD is nonincreasing, meaning f(Xk,Uk)−f(Xk+1,Uk+1) ≥ f(Xk,Uk)−f(Xk+1,Uk).
This yields,

f(Xk,Uk)− f(Xk+1,Uk+1) ≥ nkαβε
2
x,k ≥ nkαβε

2
x ∀k ≤ Niter,

as both (4.10) and (4.11) satisfy εx,k ≥ εx. We sum once again over the iterations,

f(X0,U0)− f∗ ≥ f(X0,U0)− f(XNiter+1,UNiter+1) ≥
Niter∑
k=0

nkαβε
2
x.

We conclude that
(f(z0)− f∗)

αβε2
x

≥
Niter∑
k=0

nk =: Ngrad.

76

A similar algorithm using fixed step sizes for the update in X also converges, provided

the step sizes are small enough.

Corollary 4.8. If the Armijo line search in Algorithm 4 is replaced by a gradient descent

with constant step sizes α satisfying α <
2

Lx
, Algorithm 4 converges

lim
k→∞

∥∥∥(gradXf(Xk,Uk), gradUf(Xk,Uk)
)∥∥∥

F
= 0. (4.18)

We also have the worst-case bound

Ngrad ≤
Lx(f0 − f∗)

αε2
x

. (4.19)

Proof. We derive the usual descent lemma from Lipschitz continuity of the gradient. This

gives

f
(
Xk−αgradXf(Xk,Uk),Uk

)
≤ f(Xk,Uk)−α ‖gradXf(Xk,Uk)‖2

F+α2Lx/2 ‖gradXf(Xk,Uk)‖2
F

which simplifies to

f(Xk,Uk)− f(X
(1)
k ,Uk) ≥ (α− α2Lx/2) ‖gradXf(Xk,Uk)‖2

F .

This bound replaces the Armijo decrease of Equation (4.14). The rest of the proofs from

Theorems 4.6 and 4.7 holds verbatim with step size α for every iteration. Note that for

α > 0, the factor (α−α2Lx/2) is positive for α < 2/Lx and is maximized at α = 1/Lx.

4.4.2 Convergence of the iterates using the Kurdyka-Lojasiewicz
property

This section proves convergence of the sequence of iterates to a unique stationary point

for a simplified version of the alternating minimization scheme. This section considers an

algorithm where only one gradient step is performed in between the truncated singular

value decompositions (Algorithm 6). This is similar to the algorithm described in (Fan

et al., 2019) which does not provide theoretical convergence guarantees. Our observations

indicate that Algorithm 6 is expected to behave similarly to Algorithm 4 in the limit.

Asymptotically, there is usually only one gradient step needed between two truncated

singular value decompositions. It is only in the early iterations that Algorithm 4 differs

by making several gradient steps in between singular value decompositions. For the

purpose of this theoretical section, we assume that the singular value decompositions in

Algorithm 6 are exact and not approximated or randomized. This corresponds to setting

εu = 0 in Algorithm 4. This section is written using the notation of a feature matrix Φ

as in problem (4.1), but the results apply similarly to problem (4.4) if one assumes that

the Lipschitz condition A10 applies to a kernel K instead of Φ.

77

Algorithm 6 A simple alternating minimization scheme for Problem (4.1) or (4.4)

1: Given: The sensing matrix A ∈ Rm×ns, measurements b ∈ Rm, a tolerance εx > 0,
estimation of r = rank(Φ(M)).

2: Set k = 0
3: Find X0 that satisfies AX0 = b.
4: U0 = truncate_svd(Φ(X0)) . Equation (4.9)
5: while ‖gradXf(Xk,Uk)‖F > εx do
6: gradXf(Xk,Uk) = PTLA,b(∇Xf(Xk,Uk)) . Equation (2.22)
7: αk = Armijo ((Xk,Uk),−gradXf(Xk,Uk)) . Algorithm 5
8: Xk+1 = Xk − αkgradXf(Xk,Uk)
9: Uk+1 = truncate_svd(Φ(Xk+1)) . exact SVD, not randomized
10: end while
11: return (Xk,Uk) such that ‖gradf(Xk,Uk)‖F ≤ εx.

We define a distance on the manifold M = LA,b ×Grass(N, r).

Definition 4.1 (Chordal distance onM). Given two subspaces U1,U2 ∈ Grass(N, r), the

canonical angles θi for i = 1, . . . , r are defined as θi = cos−1(σi) where σi are the r singular

values of U>1 U2, with range(U1) = U1 and range(U2) = U2. For all U1,U2 ∈ Grass(N, r)

the chordal distance on Grass(N, r) is defined by dist(U1,U2) :=
√∑r

i=1 sin2 θi. For all

(X1,U1), (X2,U2) ∈M, define

dist
(

(X1,U1), (X2,U2)
)

:=

√√√√‖X1 −X2‖2
F +

r∑
i=1

sin2 θi. (4.20)

as a distance on M.

In this section, we prove finite length of the sequence of iterates inM using the metric

defined above. For two subspaces U1 and U2, with Θ = diag(θi) the diagonal matrix con-

taining the principal angles, the geodesic distance between U1 and U2 is given by ‖Θ‖F.

We prefer to use the chordal distance ‖sin Θ‖F, because it is easier to derive perturba-

tion bounds for the singular value decomposition in this metric. The two distances are

equivalent, the geodesic distance takes values between 0 and π
√
r/2, while the chordal

distance takes values between 0 and
√
r (Dhillon et al., 2008).

The following assumption ensures a non-degeneracy of the spectrum of the feature

matrix.

A9 (Gap between the singular values). There exists δ > 0 such that the sequence (Xk)k∈N
generated by Algorithm 6 satisfies, for all k ≥ 0,

σr(Φ(Xk))− σr+1(Φ(Xk)) ≥ δ > 0.

78

This property ensures that the minimizer of the function f(X, ·) : Grass(N, r) → R
is well defined, i.e., that the truncated SVD of Φ(X) is unique, which is necessary to

establish convergence of the alternating minimization to a unique limit point. We use

Assumption 9 to derive a Lipschitz continuity result on the truncated singular value

decomposition. We now show two main lemmas (4.9 and 4.13), inspired by (Bolte et al.,

2013).

Lemma 4.9 (Gradient lower bound on iterates gap). Assume that Algorithm 6 generates

a bounded sequence of iterates. Then, there exists ρ2 > 0 such that, for all k ∈ N,

‖gradf(Xk+1,Uk+1)‖F ≤ ρ2dist
(

(Xk+1,Uk+1), (Xk,Uk)
)

(4.21)

with ρ2 := 2(Lg + 1/α) for some Lg ≥ 0.

Proof. The expression

Xk+1 = Xk − αkgradXf(Xk,Uk)

implies

gradXf(Xk+1,Uk+1) = (Xk −Xk+1)/αk + gradXf(Xk+1,Uk+1)− gradXf(Xk,Uk).

Define the set S̃ = cl (conv((Xk)k∈N)), the closure of the convex hull of the sequence of

iterates, and S = S̃×Grass(N, r). We show that the vector field gradf |S : S → TM is Lg-

Lipschitz continuous in the sense of Definition 4.3 for some Lg ≥ 0. Since S is bounded

and the Hessian is continuous, there exists Lg ≥ 0 such that ‖Hessf(x)‖ ≤ Lg for all

x ∈ S. By Proposition 4.18, gradf |S is Lg-Lipschitz continuous. Using the triangular

inequality and the fact that α is a lower bound of αk for all k gives

‖gradXf(Xk+1,Uk+1)‖F ≤ ‖Xk+1 −Xk‖F /α + ‖gradXf(Xk+1,Uk+1)− gradXf(Xk,Uk)‖F

≤ dist
(

(Xk+1,Uk+1), (Xk,Uk)
)
/α + Lgdist

(
(Xk+1,Uk+1), (Xk,Uk)

)
≤ (1/α + Lg)dist

(
(Xk+1,Uk+1), (Xk,Uk)

)
.

This gives (4.21) recalling that, since gradUf(Xk+1,Uk+1) = 0,

‖gradf(Xk+1,Uk+1)‖F = ‖gradXf(Xk+1,Uk+1)‖F .

Further auxiliary results are needed.

Lemma 4.10 (Wedin’s theorem (Stewart, 1998)). Let Y, Y̌ ∈ RN×s with singular value

decompositions

Y =

min(N,s)∑
i=1

σiui(vi)
> and Y̌ =

min(N,s)∑
i=1

σ̌iǔi(v̌i)
>,

79

with σ1 ≥ σ2 ≥ · · · ≥ σmin(N,s) and similarly for Y̌ . If there exists δ > 0 such that

min
1≤i≤r

r+1≤j≤min(N,s)

|σ̌i − σj| ≥ δ (4.22)

and

σ̌r ≥ δ,

then

‖sin Θ‖2
F ≤

2
∥∥Y̌ − Y ∥∥2

F

δ2
(4.23)

with Θ the matrix of the principal angles between
[
u1 u2 · · · ur

]
and

[
ǔ1 ǔ2 · · · ǔr

]
.

The following lemma is a direct consequence of Wedin’s theorem.

Lemma 4.11. Let Y, Y̌ ∈ RN×s. Consider the singular value decomposition of Y =∑min(N,s)
i=1 σiuiv

>
i , with σ1 ≥ σ2 ≥ · · · ≥ σmin(N,s). Let us also write Ur :=

[
u1 u2 · · · ur

]
,

a matrix whose columns span the left principal subspace associated to the r largest singu-

lar values. Similarly,
∑min(N,s)

i=1 σ̌iǔiv̌
>
i , with σ1 ≥ σ2 ≥ · · · ≥ σmin(N,s). Let us also write

Ǔr :=
[
ǔ1 ǔ2 · · · ǔr

]
. If there exists δ > 0 such that σr − σr+1 ≥ δ and σ̌r − σ̌r+1 ≥ δ,

then

dist(Ǔr,Ur)2 ≤ 2

δ2

∥∥Y̌ − Y ∥∥2

F
,

where dist(Ur, Ǔr) =
√∑r

i=1 sin(θi)2 (with θi the principal angles between Ur and Ǔr) is

the distance between the subspaces Ur and Ǔr.

Proof. The result follows from the sin Θ bound (4.23) in Wedin’s theorem. Let us verify

the assumptions. From the assumptions we know that σr ≥ δ and σ̌r ≥ δ. If Wedin’s

theorem does not apply, Assumption (4.22) is not satisfied and neither is it satisfied with

the roles of Y and Y̌ reversed. In that case, since there exists no δ > 0 such that (4.22)

holds, one must have σi = σ̌j, for some i ≤ r, j ≥ r+1, and σ̌l = σm, for l ≤ r,m ≥ r+1.

However, since the singular values are ordered decreasingly, this gives:

σm ≤ σi = σ̌j ≤ σ̌l = σm,

which implies that there exists i ≤ r and m ≥ r + 1 such that

σm = σi = σ̌j = σ̌l.

This is a contradiction with σr−σr+1 ≥ δ and σ̌r− σ̌r+1 ≥ δ. Therefore, these conditions

guarantee that Wedin’s theorem applies.

80

In the next lemma, we combine the previous bound with the Lipschitz continuity of

Φ.

A10 (Lipschitz continuity of the features). For Problem (4.1), there exists LΦ ≥ 0 such

that for any Xk, Xk+1 produced by Algorithm 6, ‖Φ(Xk+1)− Φ(Xk)‖F ≤ LΦ ‖Xk+1 −Xk‖F.

For Problem (4.4), there exists LK ≥ 0 such that ‖K(Xk+1, Xk+1)−K(Xk, Xk)‖F ≤
LK ‖Xk+1 −Xk‖F.

If we assume that the sequence (Xk)k∈N is bounded, which we do in the main result

of this section (Theorem 4.16), then it is sufficient for the features and kernel to be

locally Lipschitz continuous in order for A10 to hold. The monomial and Gaussian kernel

are locally Lipschitz continuous. We also note that if the sublevel set {(X,U) ∈ M :

f(X,U) ≤ f(X0,U0)} is bounded, then the iterates are contained in a bounded set since

Algorithm 6 is a descent method.

Lemma 4.12. Let A9 and A10 hold. It follows that, for all k ≥ 0, the sequence

(Xk,Uk)k∈N produced by Algorithm 6 satisfies

dist(Uk,Uk+1)2 ≤ 2L2
Φ

δ2
‖Xk+1 −Xk‖2

F .

Proof. By definition of Uk, Lemma 4.11 ensures that

dist(Uk,Uk+1)2 ≤ 2

δ2
‖Φ(Xk+1)− Φ(Xk)‖2

F . (4.24)

Indeed, Uk = truncate-svd(Φ(Xk)) is composed of the r leading left singular vectors of

Φ(Xk), which are uniquely defined due to A9. The result then follows from the Lipschitz

continuity of Φ.

This lemma allows us to show the following result.

Lemma 4.13 (Sufficient decrease property). Assume that A9 and A10 hold. Then, there

exists ρ1 > 0, independent of k, such that the iterates of Algorithm 6 satisfy for all k ≥ 0

f(Xk,Uk)− f(Xk+1,Uk+1) ≥ ρ1dist
(

(Xk,Uk), (Xk+1,Uk+1)
)2

. (4.25)

Proof. From the Armijo decrease of Lemma 4.5,

f(Xk,Uk)− f(Xk+1,Uk) ≥
β

α0

‖Xk −Xk+1‖2
F ,

81

where α0 is the largest step allowed by the backtracking. Set M2 = 2L2
Φ/δ

2. Using that

f(Xk+1,Uk+1) ≤ f(Xk+1,Uk), we get

f(Uk, Xk)− f(Uk+1, Xk+1) ≥ f(Uk, Xk)− f(Uk, Xk+1)

≥ β

α0

‖Xk+1 −Xk‖2
F =

β

α0(1 +M2)
(1 +M2) ‖Xk+1 −Xk‖2

F

≥ β

α0(1 +M2)

(
‖Xk+1 −Xk‖2

F + dist2(Uk,Uk+1)
)
,

where we use Lemma 4.12, thus establishing (4.25) with ρ1 :=
β

α0(1 +M2)
.

We now show convergence of the gradient norms to zero for Algorithm 6.

Corollary 4.14 (Global convergence for Algorithm 6). Set εx = 0, for any starting

point z0 = (X0,U0) ∈ M, Algorithm 6 applied to (4.1) or (4.4) produces a sequence(
Xk,Uk

)
k∈N

such that

lim
k→∞
‖gradf(Xk,Uk)‖F = 0. (4.26)

Proof. Using Lemmas 4.9 and 4.13 gives,

f(Xk,Uk)− f(Xk+1,Uk+1) ≥ ρ1dist
(

(Xk,Uk), (Xk+1,Uk+1)
)2

≥ ρ1/ρ2 ‖gradf(Xk+1,Uk+1)‖2
F .

We conclude by noticing that the left-hand side is a telescopic sum and that f is nonneg-

ative. For any k̄ ≥ 0,

f(z0) ≥
k̄∑
k=1

ρ1/ρ2 ‖gradf(Xk+1,Uk+1)‖2
F .

The sum is bounded independently of k̄ ≥ 0, hence lim
k→∞
‖gradf(Xk+1,Uk+1)‖F = 0.

The bounds in Lemmas 4.9 and 4.13 are standard and hold for most descent methods.

The values ρ1, ρ2 depend on the specifics of the algorithm used (Bolte et al., 2013).

We now define the Kurdyka-Lojasiewicz inequality on Riemannian manifolds, which was

introduced in (Hosseini, 2015).

Definition 4.2 (The Kurdyka-Lojasiewicz inequality). Let M be a Riemannian mani-

fold. A locally Lipschitz function f : M→ R satisfies the Kurdyka-Lajasiewicz inequality

at x ∈ M if and only if there exist η ∈]0,∞[, a neighbourhood V ⊂ M of x, and a

continuous concave function κ : [0, η]→ [0,∞[such that

• κ(0) = 0,

82

• κ is continuously differentiable on]0, η[,

• κ′ > 0 on]0, η[,

• For every y ∈ V with f(x) < f(y) < f(x) + η, we have

κ′(f(y)− f(x)) ‖gradf(y)‖ ≥ 1. (4.27)

If f satisfies the KL inequality at every point x ∈M, we call f a KL function.

Property (4.27) can be shown to imply∥∥grady (f ◦ (κ(y)− κ(x))
∥∥ ≥ 1.

This property is easily shown to hold at points where gradf(x) 6= 0. The intuition

behind KL functions is that they can be re-parametrized to be sharp, even at critical

points. They are amenable to sharpness (Bolte et al., 2013).

Lemma 4.15 ((de Carvalho Bento et al., 2016) Lemma 4.1). Let {ak}k∈N be a sequence

of nonnegative numbers. If
∞∑
k=1

a2
k

ak−1

converges, then
∞∑
k=1

ak converges as well.

Theorem 4.16. Set εx = 0. Assume that Algorithm 6, applied to problem (4.1) or (4.4)

using the monomial or Gaussian kernel, generates a bounded sequence (Xk,Uk)k∈N. If A9

and A10 hold, then, the sequence has finite length, that is

∞∑
k=1

dist
(

(Xk,Uk), (Xk+1,Uk+1)
)
<∞. (4.28)

Additionally, (Xk,Uk)k∈N converges to a unique point (X∗,U∗), which is a critical point

of f on M.

Proof. The monomial and Gaussian kernels are algebraic or exponential function. These

functions are known to be KL functions (Bolte et al., 2013), hence the cost function f

is a KL function (Definition 4.2). For convenience, we write zk = (Xk,Uk). Let ω(z0)

denote the set of accumulation points for some starting point z0. This is a closed set,

which is bounded by assumption, therefore it is compact. Since the sequence (zk)k∈N is

bounded, there exists a subsequence (zkq)q∈N which converges to some z̄ ∈ M. We want

to show that ω(z0) is a singleton, i.e., ω(z0) = {z̄}.
The function f is continuous, which implies limq→∞ f(Xkq ,Ukq) = f(z̄). Since f(zkq)q∈N

is non-increasing, the function f is also constant on ω(z0). Since f is a KL function, for

every point z ∈ ω(z0), there exists a neighbourhood Vz of z and a continuous concave

83

function κz : [0, ηz] → [0,∞[of class C1 on]0, ηz[with κz(0) = 0 and κ′z > 0 on]0, ηz[

such that, for all y ∈ Vz with f(z) < f(y) < f(z) + ηz, we have

κ′z(f(y)− f(z)) ‖gradf(y)‖F ≥ 1.

By compactness of ω(z0), we find a finite number of points z̄1, . . . , z̄p in ω(z0) such that

∪pi=1Vz̄i covers ω(z0). We choose ε > 0, such that V := {y ∈ M : dist
(
y, ω(z0)

)
< ε} is

contained in ∪pi=1Vz̄i . Then, we set

η = min
i=1,...,p

ηz̄i , κ′(t) = max
i=1,...,p

κ′z̄i(t) and κ(t) =

∫ t

0

κ′(τ)dτ.

We claim that for every y ∈ V with f(z̄) < f(y) < f(z̄) + η, we have

κ′(f(y)− f(z̄)) ‖gradf(y)‖F ≥ 1.

To prove that claim we find some z̄i such that y ∈ Vz̄i . From the definition of η and the

fact that f is constant on ω(z0), we have f(z̄i) < f(y) < f(z̄i) + ηz̄i . We reach our claim

using the definition of κ′, as

κ′(f(y)− f(z̄)) ‖gradf(y)‖F ≥ κ′z̄i(f(y)− f(z̄i)) ‖gradf(y)‖F ≥ 1.

For η > 0 given above, there exists k0 such that for all k > k0,

f(zk) < f(z̄) + η.

By definition of accumulation point, there exists k1 such that for all k > k1,

dist(zk, ω(z0)) < ε.

Hence, for all k > l = max{k0, k1}, we have

κ′(f(zk)− f(z̄)) ‖gradf(zk)‖F ≥ 1.

Using ‖gradf(zk+1)‖F ≤ ρ2dist
(
zk, zk+1

)
(Equation (4.21)), gives

κ′(f(zk)− f(z̄)) ≥ 1

ρ2dist
(
zk−1, zk

) . (4.29)

Concavity of κ gives

κ
(
f(zk)− f(z̄)

)
− κ
(
f(zk+1)− f(z̄)

)
≥ κ′

(
f(zk)− f(z̄)

)(
f(zk)− f(zk+1)

)
. (4.30)

84

By Equation (4.25), we have ρ1dist2
(
zk, zk+1

)
≤ f(zk)− f(zk+1) for all k ≥ 0. This fact,

in addition to (4.29), plugged into (4.30) gives

κ
(
f(zk)− f(z̄)

)
− κ
(
f(zk+1)− f(z̄)

)
≥ 1

ρ2dist
(
zk−1, zk

)ρ1dist2
(
zk, zk+1

)
,

or equivalently,

dist2
(
zk, zk+1

)
dist
(
zk−1, zk

) ≤ ρ2

ρ1

κ
(
f(zk)− f(z̄)

)
− κ
(
f(zk+1)− f(z̄)

)
. (4.31)

For any N > l, we sum (4.31) for all l ≤ k ≤ N , using that the right-hand side is a

telescopic sum,

N∑
k≥l

dist2
(
zk, zk+1

)
dist
(
zk−1, zk

) ≤ N∑
k≥l

ρ2

ρ1

[
κ
(
f(zk)− f(z̄)

)
− κ
(
f(zk+1)− f(z̄)

)]
≤ ρ2

ρ1

[
κ
(
f(zl)− f(z̄)

)
− κ
(
f(zN)− f(z̄)

)]
≤ ρ2

ρ1

[
κ
(
f(zl)− f(z̄)

)
− κ
(
f(z̄)− f(z̄)

)]
=
ρ2

ρ1

κ
(
f(zl)− f(z̄)

)
, (4.32)

where we used that f(z̄) ≤ f(zN) , κ is increasing and κ(0) = 0. We deduce that the

left-hand side of (4.32) converges as N →∞, since it is upper-bounded independently of

N . By Lemma 4.15,
∑∞

k≥l dist
(
zk, zk+1

)
also converges and therefore

∞∑
k=1

dist
(
zk, zk+1

)
<∞.

Thus, (zk)z∈N is a Cauchy sequence converging to z̄ = ω(z0). This unique limit point is

a critical point of f on M according to Corollary 4.14.

4.5 Discussion of assumptions in convergence results

In this section, we discuss the Lipschitz smoothness conditions that are used in the com-

plexity and convergence analysis of Algorithm 2 (Riemannian trust-region) and Algo-

rithm 4 (Alternating minimization). We also investigate their practicality for the mono-

mial and Gaussian kernel. More precisely, we establish under which conditions on the

kernel one can ensure that A2, A3 and A8 are satisfied for the cost function of (4.4).

The following discussion requires the use of the exponential map (Definition 2.19) as

the retraction. The exponential map follows geodesics along the manifold in directions

85

prescribed by tangent vectors. Using the exponential map on M is not a restriction, as

the exponential map on the Grassmann manifold is computable (Absil et al., 2004) and

the exponential map on LA,b is trivially given by (2.23).

We introduce some preliminary results in order to establish Lipschitz continuity of the

vector field gradf . Lipschitz continuity of a vector field on a smooth manifold is defined

using the notion of parallel transport (Equation (2.13)). The injectivity radius at x ∈M,

written inj(x), is introduced in Definition 2.20.

Definition 4.3. (Boumal, 2020, Definition 10.42) A vector field V on a connected man-

ifold M is L-Lipschitz continuous if, for all x, y ∈M with dist(x, y) < inj(x),

‖PTγ
0←1V (y)− V (x)‖ ≤ Ldist(x, y),

where γ : [0, 1] → M is the unique minimizing geodesic connecting x to y and PTγ
0←1

denotes the parallel transport along γ.

Functions with Lipschitz continuous gradient exhibit the following regularity condition

for the pullback f̂ = f ◦R, provided the retraction used is the exponential map, R = Exp.

Proposition 4.17. (Boumal, 2020, Corollary 10.52) If f : M → R has L-Lipschitz

continuous gradient, then

|f(Expx(η))− f(x)− 〈η, gradf(x)〉| ≤ L

2
‖η‖2

for all (x, η) in the domain of the exponential map.

In order to show Lipschitz continuity of the gradient, we use the following proposition,

which is based on an upper bound on the operator norm of the Riemannian Hessian.

Proposition 4.18. (Boumal, 2020, Corollary 10.45) If f : M → R is twice continu-

ously differentiable on a manifold M, then gradf is L-Lipschitz continuous if and only

if Hessf(x) has operator norm bounded by L for all x ∈M, that is,

‖Hessf(x)‖ = max
η∈TxM
‖η‖=1

‖Hessf(x)[η]‖ ≤ L. (4.33)

We first compute the Euclidean gradient of (4.4) with respect to each variable,

∇Xf(X,W) = DK(X)∗PW⊥

and

∇Wf(X,W) = −2K(X)W .

This naturally gives, for ∆ ∈ TWGrass(s, r)

∇2
WWf(X,W)[∆] = −2K(X)∆.

86

Proposition 4.19. Consider the cost function of (4.4) and assume that the retraction

is the exponential map. If DK(X) is Lipschitz continuous over LA,b, then (4.12) holds

where Lx is the Lipschitz constant of DK(X). If ‖K(X)‖F ≤ C for all X ∈ LA,b,

condition (4.13) holds with Lu = 2C.

Proof. For a given X ∈ LA,b, consider the function fW(X, ·) : Grass(s, r) → R. Its Rie-

mannian Hessian is such that for ∆ ∈ TWGrass(s, r), HessfW(W , X)[∆] = −2PW⊥K(x)∆.

Hence ‖HessfW(W , X)‖ ≤ 2 ‖K(X)‖F. Using 4.18, the vector field gradfW(X, ·) is Lip-

schitz continuous with constant LW = 2 ‖K(x)‖F. If the kernel is upper-bounded for all

X ∈ LA,b, the constant LW is independent of X. This implies that (4.13) holds.

We also analyse Lipschitz continuity of the vector field gradfX .

‖gradXf(X1,W)− gradXf(X2,W)‖F =
∥∥PTLA,b (∇Xf(X1,W)−∇Xf(X2,W))

∥∥
F

≤ ‖∇Xf(X1,W)−∇Xf(X2,W)‖F

≤ ‖(DK(X1)∗ −DK(X2)∗) PW⊥‖F

≤ ‖DK(X1)∗ −DK(X2)∗‖2 ‖PW⊥‖F

≤ ‖DK(X1)−DK(X2)‖2 .

If DK(X) is Lx-Lipschitz over LA,b, we can write

‖gradXf(X1,W)− gradXf(X2,W)‖F ≤ Lx ‖X1 −X2‖F

and gradXf(.,W) is also Lx-Lipschitz, where the constant Lx is independent of W ∈
Grass(s, r). This implies that (4.12) holds.

The conditions listed in Proposition 4.19 on the kernel and its derivatives can be

difficult to verify or satisfy in general. For instance, the Gaussian kernel Kσ is bounded

above on LA,b, but the monomial kernel Kd is not for any degree d ≥ 1. For the Gaussian

kernel, the map DKσ(X) is always Lipschitz continuous on LA,b. For the monomial kernel,

the map DKd(X) is Lipschitz continuous for d ≤ 2, and only locally Lipschitz continuous

for d ≥ 3.

Fortunately, the picture is much simpler if the sequence of iterates (Xk)k∈N generated

by Algorithm 2 or Algorithm 4 is contained in a bounded set. This ensures that we can

find Lipschitz constants such that the bounds in A2, A3 and A8 hold at every iterate

of the algorithm (and trial points if any), which is all that is needed in the convergence

analysis.

Proposition 4.20. Consider the cost function of either (4.1) or (4.4) and apply Algo-

rithm 4 or Algorithm 2 with the exponential map as the retraction. If the convex hull of

the sequence of iterates (Xk)k∈N and the trial points is a bounded set, then (2.16), (2.17)

and (4.12)-(4.13) hold at every iterate (Xk,Uk)k∈N and trial points of the algorithm.

87

Proof. Provided the kernel is a smooth function, the derivatives of the cost function are

continuous. As a consequence of the Weierstrass theorem, the derivatives are bounded on

the closure of the convex hull of the iterates, which is compact (Grass(s, r) is compact).

If the Hessian is bounded on the closure of convex hull of the iterates, the gradient is

Lipschitz continuous on that set (Proposition 4.18) and therefore A2 and A8 hold with the

exponential map as the retraction (Proposition 4.17). The continuity of the third-order

derivatives implies A3 in a similar way, which is required for the convergence analysis of

the second-order RTR.

4.6 Numerical experiments

In this section we validate our approach with numerical results on randomly generated

test problems. We also compare the performances of the different algorithms we propose.

4.6.1 Implementation of the algorithms

Our code for nonlinear matrix recovery is available at https://github.com/flgoyens/

nonlinear-matrix-recovery in both Matlab and Python. We use the Manopt (Boumal

et al., 2014) and Pymanopt (Townsend et al., 2016) libraries for optimization on manifold

solvers. We denote by RTR1 and RTR2 the first- and second-order versions of Algorithm 2,

for which we use the default parameters of the Manopt solver. The maximum number

of iterations is set at 500 for RTR1 and RTR2. The RTR subproblems are solved using

truncated conjugate gradients (Algorithm 3) and the final termination criterion is only a

first-order condition (the norm of the gradient) which we set at 10−6 for RTR1 and RTR2.

Pymanopt uses automatic differentiation and does not require to input the derivatives of

the cost function. In Manopt, we use the derivatives computed in Section 4.1.2.

Altmin1 is a first-order version of alternating minimization (Algorithm 4) which uses

gradient descent with Armijo line search to solve subproblem (4.7). In the second-order

version of Algorithm 4 (Altmin2), a second-order trust-region is applied to the mini-

mization of (4.7). The default values for the parameters of Algorithm 4 as well as the

Gaussian and monomial kernels are presented in the table below.

Parameter Default value Parameter Default value
εx, εu 10−6 c in (Monomial kernel) 1
εx,k Equation (4.10) α0 in Algorithm 5 2

σ in (Gaussian kernel) 2.5 τ in Algorithm 5 0.5
d in (Monomial kernel) 2 β in Algorithm 5 10−4

88

https://github.com/flgoyens/nonlinear-matrix-recovery
https://github.com/flgoyens/nonlinear-matrix-recovery

4.6.2 Test problems

We describe the set of parameters that we want to vary and test the dependence of each

algorithm with respect to these parameters.

Union of subspaces Case study 2 depends on the following parameters: ambient

dimension n, number of subspaces, dimension of each subspace, number of points on

each subspace. To generate a random union of subspaces, we place the same number of

points on each subspace and take subspaces of the same dimension. We calculate a basis

for a random subspace and generate each point on that subspace by taking a random

combination of the columns of that basis.

Clusters For Case study 3, the generation of the test problem depends on the following

parameters: the number of clusters, the number of points in each cluster and the standard

deviation σc of the clusters. We first generate random centers in Rn. We then add to

each center a cluster of points with multivariate Gaussian distribution with zero mean

and covariance σ2
c Id with σc = 0.5.

4.6.3 Testing methodology

Throughout, we say that an algorithm successfully recovers the matrix M ∈ Rn×s if it

returns a matrix X∗ such that the root mean square error (RMSE) is below 10−3,

RMSE(M,X∗) := ‖X∗ −M‖F /
√
ns ≤ 10−3.

Our goal is to test the ability of our methods to recover the original matrix M . We

measure the performance against an increase in difficulty of the problem for several pa-

rameters. Parameters that increase the difficulty of the recovery include:

1. Reducing the number of measurements m;

2. Increasing the rank in the feature space.

In the case of unions of subspaces, for a fixed number of points, the rank of Φd(M) de-

pends on the number and the dimension of the subspaces, as indicated by Proposition 3.1.

For clusters, the ε-rank increases with the number of clusters. The undersampling ratio

is defined as δ =
m

ns
, it is the number of measurements over the number of entries in M .

The examples presented in this section are matrix completion problems, for which the ob-

servations consist of entries of M selected at random. We present phase transition results

to numerically show which geometries can be recovered and which undersampling ratios

are needed. Typical phase transition plots for matrix completion vary the undersampling

89

ratio and the rank of the matrix (Tanner and Wei, 2013). For union of subspaces, the rank

of the feature space is difficult to control, therefore we vary the number and dimension of

the subspaces. For each value of the varying parameter, we generate 10 random matrices

M that follow the desired structure. We try to recover each with varying δ from 0.1 to

0.9 for a random initial guess. If the RMSE is below 10−3 in the maximum number of

iterations allowed by the algorithm, we consider the recovery to be successful. The phase

transition plots record which of the 10 random problems is solved for each configuration.

In Figures 4.3 through 4.7 the grayscale indicates the proportion of problems solved, with

white = 100% of instances solved and black = 0%.

4.6.4 Numerical results

Comparing the performance of RTR and Alternating minimization In Fig-

ure 4.1, we compare RTR1 and RTR2 to solve the recovery problem (4.4) of a union of

subspaces and see that RTR1 performs poorly, especially in comparison to the quadratic

convergence rate of RTR2. This suggests that the conditioning number of the Hessian

on M = LA,b × Grass(s, r) is large, hence first-order methods on M are not suitable.

However, we see below that first-order alternating methods perform well, which suggests

that the bad conditioning is a consequence of the product manifold.

0 50 100 150 200 250 300 350 400 450 500

Iterations

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

G
ra

d
ie

n
t
n
o
rm

RTR1

RTR2

Figure 4.1: First- and second-order Riemannian trust-region

Figure 4.2 compares the performance of RTR2 (Algorithm 2), Altmin1 and Altmin2

which are first- and second-order alternating minimization (Algorithm 4). We choose

a problem of matrix completion over a union of subspaces. We find that RTR2 has a

90

local quadratic rate of convergence, which makes it the method of choice if we want to

recover M to high accuracy. Both Altmin1 and Altmin2 make faster progress during

the early iterations; thus these methods should be considered if the required accuracy is

low. Our observations indicated that, usually, the distance to the solution M is of the

same order of magnitude as the gradient norm. Hence, using an algorithm such as RTR2

which terminates with a smaller gradient norm yields a greater accuracy in the recovery

of M . We noticed that the first-order Altmin2 and the second-order Altmin2 typically

stall numerically when the gradient norm is around 10−6. This is less frequent for RTR2,

which may converge up to a gradient norm below 10−13.

0 10 20 30 40 50

Iterations

10
-10

10
-5

10
0

G
ra

d
ie

n
t

n
o

rm

Altmin1

Altmin2

RTR2

0 20 40 60 80 100

Cost calls

10
-10

10
-5

10
0

G
ra

d
ie

n
t

n
o

rm

Altmin1

Altmin2

RTR2

0 20 40 60 80 100

Gradient calls

10
-10

10
-5

10
0

G
ra

d
ie

n
t

n
o

rm

Altmin1

Altmin2

RTR2

0 100 200 300

Hessian calls

10
-10

10
-5

10
0

G
ra

d
ie

n
t

n
o

rm

Altmin1

Altmin2

RTR2

0 0.2 0.4 0.6 0.8 1

Time [s]

10
-10

10
-5

10
0

G
ra

d
ie

n
t

n
o

rm

Altmin1

Altmin2

RTR2

Figure 4.2: Comparing alternating minimization (first-order Altmin1 and second-order
Altmin2) with the Riemannian trust-region algorithm (RTR2) for a union of subspaces
recovery.

We now illustrate how the parameters at play affect the recovery for matrices that

follows a union of subspaces model.

Degree of the monomial features Deciding which degree d to use in practice requires

consideration. Previous works limit themselves to d = 2 and d = 3. This is understand-

able because the dimension of the feature space N(n, d) increases exponentially with d.

Hence Problem (4.1) becomes practically intractable for even moderate values of d and

n, for example N(n = 20, d = 5) = 53130 and N(n = 20, d = 2) = 231.

The other natural option is to solve the kernel-based problem (4.4), where the lifted

dimension N does not appear explicitly and the Grassmann has dimension s× r. This is

attractive because, a priori, the number of columns s may not be as large as N . However,

as discussed on page 56, there are requirements on the number of samples (columns of

M) needed to allow recovery. The matrix M ∈ Rn×s must satisfy s > N − q, where q is

91

the number of linearly independent vectors v such that v>Φd(M) = 0. That is, s needs

to be large enough so that Φd(M) is rank-deficient. The analysis in (Ongie et al., 2017)

shows that the number of points s needed to allow recovery increases exponentially with

d. For that reason, unless d is small, solving problems where s is large enough for recovery

requires specific tools to handle very large scales. The monomial basis is also known to

be ill-conditioned for large degrees. This gives two obstacles to the performances of these

algorithms when the degree increases.

In Figure 4.3, we solve the recovery problems using RTR2 for an increasing number of

columns s, and we do that for a monomial kernel of degree one, two and three to compare

the recovery that is possible for each degree. In Figure 4.3(a), the degree used is d = 1.

For n = 15, the dimension of the lifted space is N(15, 1) = 16. For a large number of

data points spread over 4 subspaces of dimension 2, the rank of the monomial kernel is

9. This explains why recovery is impossible when s ≤ 9, since the kernel is not rank

deficient at the solution M . In Figure 4.3(b), the degree used is d = 2. For n = 15, the

dimension of the lifted space N(15, 2) = 136. For a large number of data points spread

over 4 subspaces of dimension 2, the rank of the monomial kernel is 21. This explains

why recovery is impossible when s ≤ 21. In Figure 4.3(c), the degree used is d = 3. For

n = 15, the dimension of the lifted space is N(15, 3) = 816. For a large number of data

points spread over 4 subspaces of dimension 2, the rank of the monomial kernel is 37.

This explains why recovery is impossible when s ≤ 37. We notice that the recovery is

still poor for s > 37. In general, d = 2 seems to give the best results for the majority of

data sets.

(a) d = 1 (b) d = 2

(c) d = 3

Figure 4.3: Phrase transition for data belonging to a union of 4 subspaces of dimension
2 in R15 for an increasing number of data points spread across the subspaces. Each
square gives the proportion of problems solved over 50 randomly generated problems,
white = 100% of instances recovered and black = 0%,

92

The dimension of the subspaces that we aim to recover plays a role in the possi-

bility to recover. In Figure 4.4, we increase the dimension of the subspaces while the

other parameters of the data remain fixed. For a fixed number of data points s, in-

creasing the dimension of the subspaces increases the rank of the monomial features (see

Proposition 3.1), and therefore, if the dimension of the subspaces becomes too large, the

recovery is compromised. For subspaces of dimension smaller than 4 in R10, we observe

good recovery, which also depends on the undersampling ratio.

1 2 3 4 5

Dimension of subspaces

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

U
n
d

e
rs

a
m

p
lin

g
 r

a
te

Figure 4.4: Phrase transition for data belonging to a union of 2 subspaces of increasing
dimension in R10 with 20 points on each subspace. Each square gives the proportion
of problems solved over 50 randomly generated problems, white = 100% of instances
recovered and black = 0%, using the polynomial kernel of degree d = 2 as lifting.

The same phenomenon is observed when the number of subspaces is increased for a

fixed number of data points, see Figure 4.5.

Clustering with missing data In the case of clusters (Case study 3 on page 57), there

is a noise inherent to the model because the kernel at the solution is only approximately

low-rank. More precisely, the matrix Kσ(M,M) has an exponential decay in the singular

values, but none of them are exactly zero. Matrices with such singular value patterns are

known to be difficult to recover in low-rank matrix completion. We adapt the homotopy

strategy outlined in (Vandereycken, 2013) to our formulation. For nc clusters, we observe

that σnc(Kσ(M)) � σnc+1(Kσ(M)), as shown in Figure 3.4, which makes it natural to

say that the ε-rank (Equation (3.18)) of M is the number of clusters. Problem (4.4)

is first solved with a random variable U ∈ Grass(s, r = 1) and random X ∈ LA,b. The

problem is then solved several times in succession with values of the rank increased by one,

using the previous solution to initialize the next solve. Let (X,Ur) ∈ LA,b × Grass(s, r)

denote the solution of the problem solved with rank r, the next problem is initialized

as (X,Ur+1) ∈ LA,b × Grass(s, r + 1) with Ur+1 =
[
Ur u

]
where u ∈ Rs has unit norm

93

1 2 3 4 5 6 7 8 9
Number of subspaces

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Un
de

rs
am

pl
in

g
ra

tio

(a) Monomial kernel degree d = 1

1 2 3 4 5 6 7 8 9
Number of subspaces

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Un
de

rs
am

pl
in

g
ra

tio

(b) Monomial kernel degree d = 2

1 2 3 4 5 6 7 8 9
Number of subspaces

0.9

0.8

0.7

0.6

0.5

0.4

0.3

Un
de

rs
am

pl
in

g
ra

tio

(c) Monomial kernel degree d = 3

Figure 4.5: Phrase transition for data belonging to a union of an increasing number of
subspaces of dimension 2 in R15 with 150 data points spread across the subspaces. Each
square gives the proportion of problems solved over 10 randomly generated problems,
white = 100% of instances recovered and black = 0%.

and is orthogonal to the vectors in Ur. The rank is increased until some value greater

than nc, when increasing brings no further progress. The recovery error can usually

not be improved beyond a RMSE of 10−2, which is much less accurate than for union

of subspace data (where is rank is exact). The completed matrix X∗ returned by this

procedure allows to perform a clustering of the columns of M starting from missing

entries. We are interested in determining when the matrix X∗ yields the same clustering

as the matrix M . We use the Rand index to measure the compatibility of two different

clusterings of the same set (Rand, 1971). The clustering is established as follows. The

entries of the matrix Kσ(X∗, X∗) are rounded to the nearest integer, which is either 0

or 1. This gives an adjacency matrix from which a clustering is inferred. That is, if

Kσ(X∗, X∗)ij ≥ 0.5, the points of index i and j are in the same cluster; otherwise they

are not. We see in Figure 4.6 that, for 5 clusters or less, the original clustering can be

94

recovered even though a significant percentage of the entries in the original matrix are

missing.

2 3 4 5

Number of clusters

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

U
n
d
e
rs

a
m

p
lin

g
 r

a
te

Figure 4.6: Percentage of problems correctly clustered for different sampling rates and
increasing number of clusters. Fifty random instances generated in each case; white =
100% of instance correctly clustered and black = 0%. Clusters belong to R5 with 20
points in each cluster.

Robustness to a bad estimate of the rank In the case of a union of subspaces, the

monomial features are exactly low-rank and it is important to have an accurate estimation

of rank(Φd(X)). Recovery is sometimes possible if the estimation is just above the correct

value. If the estimated rank is less than the exact rank or much too large, recovery

usually fails. This intuition is guided by the cost function that we use. If the variable

U is artificially constrained to be the leading singular vectors of Φ(X), the cost function

in (4.1) simplifies to

min
X

min(N,s)∑
i=r+1

σ2
i (Φ(X)).

The cost function represents the energy in the tail of the singular value decomposition,

where r is the estimation of the rank. In Figure 4.7(a), the data belongs to a union of 2

subspaces of dimension 2 in R15, with a total of s = 150 data points. With a kernel of

degree 2, the lifted dimension is N(15, 2) = 136. The phase transition shows that some

matrices are recovered when the guess of the rank is off by one.

Robustness to measurement noise In applications, it is common to assume some

noise on the measurements. Assume that we receive A and b̃ := b+ξ such that A(M) = b

where ξ ∈ Rm is some noise. In the following numerical test, we generate white Gaussian

noise, i.e. ξi ∼ N (0, σ2) for some variance σ2. In the noisy setting, the problem formula-

tion is (4.2) with the penalty parameter λ > 0 that should be tuned based on the noise

level.

95

r-1 r r+1 r+2
Rank estimation

0.9

0.8

0.7

0.6

0.5

0.4

Un
de

rs
am

pl
in

g
ra

tio

(a) Phase transition

0 20 40 60 80 100 120 140

10−13

10−10

10−7

10−4

10−1

102

Singular values in log scale

(b) Singular values of K2(M,M)

Figure 4.7: Impact of an incorrect estimate of the rank for the completion of a union
of subspaces. Each square gives the proportion of problems solved over 50 randomly
generated problems, white = 100% of instances recovered and black = 0%, using the
polynomial kernel of degree d = 2 as lifting.

Estimating an appropriate value for λ without knowledge of the noise variance σ2

is an intricate task. The solution of (4.2) for λ ∈ [0,∞[represents the trade-off curve

between minimization of the rank residual and minimization of the residual on the linear

measurements. In practical settings, a user may be able to determine which trade-off is

more meaningful for a particular application. To help determine a general strategy, we

use a scheme which increases λ over successive calls to the solver, while warm starting

each solve with the previous solution to (4.2). We have found that starting with the value

λ = 10−6 is satisfactory and we multiply λ by a factor 10 at each iteration. Figure 4.8

shows, for three different noise levels, the evolution of the solution of (4.2), labelled X∗,

as the penalty parameter λ increases. We see that where the blue and red lines cross, the

green line is still near its lowest point, that is, the solution is still minimizing the true

measurement residual as well as for any other value of λ. This allows to recommend the

simple strategy of choosing the value of λ where the value of the red and blue curves are the

closest (which approximates the value for which they intersect). This choice gives equal

weight to the rank minimization and satisfaction of the measurements. Table 4.1 shows

the accuracy of the solution X∗ for that choice of λ. We see that both the infeasibility

(‖A(X∗)− b‖2) and the distance to the solution (‖X∗ −M‖F) are proportional to the

noise level and decrease with the latter. This shows that the warm starting scheme used

to tune the parameter λ in conjunction with Problem (4.2) handles well the presence of

noise in the measurements.

96

(a) σ = 10−2 (b) σ = 10−3

(c) σ = 10−4

Figure 4.8: Solutions for noisy problems as a function of the parameter λ on the horizontal
axis.

Standard deviation
∥∥∥A(X∗)− b̃

∥∥∥
2
‖A(X∗)− b‖2 ‖X∗ −M‖F ‖A(M)− b‖2

σ = 10−2 2 · 10−1 7 · 10−2 8 · 10−2 0.2
σ = 10−3 2 · 10−2 8 · 10−3 8 · 10−3 0.02
σ = 10−4 2 · 10−3 8 · 10−4 9 · 10−4 0.002

Table 4.1: Quality of the solution X∗ for different levels of noise σ in the measurements.

97

4.7 Conclusions

In this chapter, we study the problem of nonlinear matrix recovery, where one tries to

recover a high-rank matrix that exhibits a low-rank structure in some feature space. In

therms of the use cases considered, in addition to the union of subspaces and algebraic

varieties, we propose the use of the Gaussian kernel for clustering problems with missing

data, which is a new application of nonlinear matrix completion.

We propose a novel formulation for the nonlinear matrix completion problem which

is inspired from low-rank matrix completion techniques using the Grassmann manifold.

We then show how Riemannian optimization and alternating minimization methods can

be applied effectively to solve this optimization problem. The algorithms we propose,

come with strong global convergence results to critical points and worst-case complexity

guarantees. In addition, we show that the alternating minimization algorithm converges

to a unique limit point using the Kurdyka-Lojasiewicz property.

We provide extensive numerical results that attest to the efficiency of the approach

to recover high-rank matrices drawn from unions of subspaces and clustered data. We

note that the second-order Riemannian trust-region method allows to recover with high

accuracy. We expose the difficulty of using polynomials of high degree in the monomial

kernel, as they require an exponentially increasing number of sample points to allow

recovery. Our approach proves to be efficient at clustering a data set despite the presence

of missing entries and our approach also shows great robustness against the presence of

noise in the measurements.

Nonlinear matrix recovery is a relatively new technique, and directions of improvement

remain to be investigated. Currently, nonlinear matrix recovery methods present in the

literature, including this work, require to build the feature or kernel matrix in full. The

scalability of the methods would be much improved if they only relied on a low-rank

factorization of the feature matrix, but that is not straightforward to formulate. It might

also be possible to use a low-dimensional approximation of the features, in the spirit

of (Rahimi et al., 2007).

98

Chapter 5

Applications of the algebraic variety
model

In this chapter, we consider two estimation problems which naturally build on the con-

cepts developed in Chapter 4, namely the algebraic variety model (Case study (1),

page 53) and the rank minimization of monomial features using Riemannian optimization.

Section 5.1 investigates the denoising of a point cloud that belongs to an algebraic

variety. This problem is connected to the matrix completion task in Chapter 4. In this

chapter, all the entries of the matrix are available but noisy, and the focus is on recovering

the underlying algebraic variety structure of the uncorrupted matrix.

Section 5.2 introduces a new problem: finding the transformation between two given

point clouds that have the same shape, but different positions in space. This is known

as the point cloud registration problem, which we consider under the assumption that

the point clouds to align are well approximated by an algebraic variety. Although the

registration problem appears in a variety of settings, our work was inspired by medical

imaging applications. Computed tomography (CT) scans are used as dental imaging

tools, as they are able to measure a tooth and produce a point cloud that represents its

surface. Comparing different scans of the same tooth taken months or years apart can

be helpful to assess tooth decay. Therefore, it is desirable to have an automatic way

to overlap two scans, which may have been taken from a different angle. The approach

we develop leverages the algebraic variety structure of the point clouds to compute a

transformation which overlaps two given point clouds.

Each of the two sections in this chapter begins with a review of related work, which

puts our contribution into context and highlights the relevance of using the algebraic

variety model for the denoising and registration problems.

99

5.1 Denoising an algebraic variety

This section is concerned with the problem of denoising a point cloud which can be

approximated by an algebraic variety. Point cloud denoising has already received some

attention in the literature, as surface estimation from point clouds plays a central role in

numerous imaging applications. Despite the steady increase in accuracy, most available

scanning techniques cause severe scanning artefacts such as noise and outliers (Weyrich

et al., 2004). Therefore, to apply sophisticated data analysis on point clouds originating

from scanners, substantial pre-processing is usually required.

Related work

Existing approaches for surface approximation from a point cloud fall into two categories.

They may divide the surface in patches and work on a local linearization of the surface,

such as in (Gong et al., 2010; Wang and Tu, 2013; Deutsch et al., 2018; Hao et al., 2021),

or build a global model of the surface, such as in (Weyrich et al., 2004; Bajaj et al., 1995;

Subrahmonia et al., 1996; Zwicker et al., 2002; Adamson and Alexa, 2003). The latter

approach usually builds a multivariate polynomial model of the surface, whose equations

must be computed, resulting in a large-scale optimization problem.

Gong et al. (2010) develop an approximation method by local linearization. Each

linear patch is locally denoised and a global denoising is obtained by aligning the local

estimates. Amongst local approaches, we should also note filtering based smoothing

methods, such as (Hein and Maier, 2007). While linearization approaches have shown to

give satisfactory results in a wide range of applications, the approximation of the surface

by a collection of small linear patches introduces issues of hyperparameter tuning, such

as the number and width of the patches. We present an approach which conceptually

circumvents these issues as it computes a global approximation of the point cloud by a

single algebraic variety.

Our contribution and outline of the section

We consider the problem of denoising a data set whose uncorrupted version belongs to

an algebraic variety. Our approach uses a polynomial feature map and approximates the

minimization of its rank using techniques from Riemannian optimization. Our advantage

over local linearization methods is that our approximation of the point cloud by an

algebraic variety is global, and does not require the tuning of hyperparameters stemming

from the intricate partition of the manifold in patches. Additionally, by considering

algebraic varieties, the point cloud may represent a nonsmooth surface, which cannot be

handled by local linearization methods used in the denoising of smooth manifolds. Using

100

polynomial features allows us to learn the equations that define the algebraic variety of

the data set. This is useful for data analysis tasks, including the registration of point

clouds (Section 5.2). In order to validate our approach, we compute the expected error

of our denoising procedure using Stein’s unbiased risk estimate (SURE). The relevance

of our approach is illustrated on synthetic and real data sets, on which we show that we

can extract the underlying algebraic variety structure.

5.1.1 Problem description

Consider a matrix M ∈ Rn×s whose columns all belong to an algebraic variety, as de-

scribed in Case study 1. We recall this definition for convenience.

Definition 5.1 (Algebraic variety model). Let Rd[x] be the set of real-valued polynomials

of degree at most d over Rn. A real (affine) algebraic variety of degree d is defined as the

roots of a system of finitely many polynomials P ⊂ Rd[x]:

V (P) = {x ∈ Rn : p(x) = 0 for all p ∈ P}.

We say that the matrix X =
[
x1 . . . xs

]
∈ Rn×s follows an algebraic variety model if

every column of X belongs to the same algebraic variety, that is,

xi ∈ V (P) for all i = 1, . . . , s.

Consider a noisy version

M̂ = M +ω, (5.1)

where ω ∈ Rn×s has small Frobenius norm compared to M , ‖ω‖F � ‖M‖F. Given

M̂ , the goal is to recover M as accurately as possible, without having knowledge of the

specific algebraic variety that the columns of M lie on (Figure 5.1). The distribution of

the noisy perturbation ω may or may not be known. For practical data sets, such as

medical scans, the noise may be interpreted as the mismatch between the data and the

algebraic variety model. In that case, our approach attempts to find the algebraic variety

that best approximates the data.

M

M̂

Figure 5.1: Denoising of an algebraic variety

101

5.1.2 The feature space and the monomial features

We briefly recall the connection between an algebraic variety and the monomial map, as

outlined in Section 3.2.2. Let

N =

(
n+ d
n

)
,

the number of possible monomials of degree less than or equal to d that can be formed

with n variables and let ϕd : Rn → RN represent the monomial features for some degree

d (Equation (3.15)). Consider X =
[
x1 . . . xs

]
∈ Rn×s and let

Φd(X) =
[
ϕd(x1) . . . ϕd(xs)

]
be the matrix that applies ϕd to each column of X. The key element of the approach

is that the features matrix Φd(X) is rank-deficient when the columns xi ∈ Rn belong to

an algebraic variety. Suppose the variety V (P) ⊂ Rn is defined by the set of linearly

independent polynomials P = {p1, . . . , pq} where each polynomial pi is at most of degree

d, then

xi ∈ V (P) for all i = 1, . . . , s if and only if Φd(X)>C = 0, (5.2)

where the columns of C ∈ RN×q define the coefficients of the polynomials p1, . . . , pq in

the monomial basis. Thus, rank(Φd(X)) ≤ min(N − q, s). This ensures that Φd(X) is

rank-deficient when X follows an algebraic variety model, provided that s > N − q. In

situations where N ≥ s, the monomial kernel Kd can be used to represent the monomial

features and rank(Φd(X)) = rank(Kd(X,X)) for all X ∈ Rn×s.

5.1.3 Denoising as an optimization problem

We formulate the denoising task as an optimization problem. As the previous section

explained, one would aspire to minimize the rank of the monomial feature matrix to

enforce an algebraic variety model. We do so under the constraint that the solution is

not “ too far away” from the noisy input M̂ . Given some η > 0, an estimate of the noise

level, this translates to 
min
X

rank(Φd(X))∥∥∥X − M̂∥∥∥2

F
≤ η,

(5.3)

where M̂ ∈ Rn×s is defined in (5.1) and ‖·‖F is the Frobenius norm. Solving (5.3) is im-

practical as the rank is discontinuous. In a fashion similar to Chapter 4, we choose

a smooth approximation of the rank using the Grassmann manifold, which appears

in (Balzano et al., 2010; Eftekhari et al., 2019). Recall that the Grassmann manifold,

102

written Grass(N, r) represents the set of all subspaces of dimension r in RN . The Rieman-

nian manifold structure of Grass(N, r), which allows to define optimization algorithms

on Grass(N, r), is covered in Section 2.9.5. A point U ∈ Grass(N, r) is represented by a

matrix U ∈ StN×r such that range(U) = U . Given an estimation of the rank of the lifted

matrix, r = rank(Φd(M)), we formulate the following problem
min
X,U

‖Φd(X)− PUΦd(X)‖2
F

U ∈ Grass(N, r)∥∥∥X − M̂∥∥∥2

F
≤ η,

(5.4)

where PU = UU>∈ RN×N is the orthogonal projection on the subspace U . In (5.4), the

cost function is nonconvex but smooth. This cost function minimizes the components of

Φd(X) contained outside the span of U , so that when the cost is zero, all the columns of

Φd(X) belong to the r-dimensional subspace U and Φd(X) has rank r.

An alternative formulation is the following, for some λ ≥ 0:min
X,U

f(X,U ; M̂) := ‖Φd(X)− PUΦd(X)‖2
F + λ

∥∥∥X − M̂∥∥∥2

F

U ∈ Grass(N, r).
(5.5)

This formulation is easier to solve, as it is unconstrained in the variable X. Problem (5.5)

is similar to (4.2), our noisy formulation for matrix recovery. Both receive noisy measure-

ments, but all the entries are available in the former. There exists a λ ≥ 0 such that (5.4)

and (5.5) are equivalent. We focus on solving (5.5) in this section.

Riemannian optimization and software

Through the lens of Riemannian optimization, which we covered in Chapter 2, Prob-

lem (5.5) can be viewed as the unconstrained minimization of a function defined on

the manifold M = RN×s ×Grass(N, r). This general framework allows us to use var-

ious off-the-shelf Riemannian optimization methods. We apply the second-order Rie-

mannian trust-region (Algorithm 2) to formulation (5.5). The Riemannian trust-region

method (RTR) is expected to converge (at least) superlinearly near a non-degenerate

minimizer (Absil et al., 2007) and global rates of convergence to second-order stationary

points were recently shown (Boumal et al., 2019).

Problem (5.5) is nonconvex but we have good initial guesses for the variables X and

U , which are respectively M̂ and the first r singular vectors of Φd(M̂). Therefore, for the

examples considered in Section 5.1.5, we observe numerically that the denoising procedure

is robust and appears to find the global minimum reliably despite the nonconvexity. Let

us emphasize that in order to solve (5.5), we do not assume knowledge of the noise level

103

η. We have yet to detail how to choose a suitable value for the regularization parameter

λ. We use a scheme which does not require an estimation of the noise level η. The

problem is first solved with a small value of λ = 10−6. The problem is then solved

again with increasing values of λ, with the previous solution used as initial guess for

the next solve. This process is stopped when a good trade-off between the values of

‖Φd(X)− PUΦd(X)‖F and
∥∥∥X − M̂∥∥∥

F
is reached.

Various other methods could be used to minimize (5.5), such as an alternating min-

imization over the variable X and U , as proposed in Section 4.3. In this section, we

choose to use a Riemannian optimization method on RN×s×Grass(N, r), which allows to

seamlessly employ second-order methods despite the Grassmann constraint. For surface

estimation applications, where high accuracy is required, second-order methods have the

significant advantage of having a superlinear convergence rate near limit points. In our

experience, alternating methods do not seem to allow for local superlinear convergence.

Learning the equations that define the algebraic variety

We can draw a connection with manifold learning problems which attempt to uncover the

structure in high-dimensional data sets and perform a nonlinear dimensionality reduc-

tion (Cayton, 2005). If ‖Φd(X)− PUΦd(X)‖F = 0, then the range of Φ(X) has dimension

at most r. The orthogonal complement to U = range(Φ(X)), which is also the null space

of Φ(X)>, has dimension at least N − r. A basis for null(Φ(X)>) gives coefficients of

polynomial equations satisfied by every column in X, as shown by Equation (5.2). Con-

cretely,

‖Φd(X)− PUΦd(X)‖F = 0⇐⇒ U⊥ ⊥ range(Φd(X))

⇐⇒ U⊥ ∈ (range(Φd(X)))⊥

⇐⇒ U⊥ ∈ null
(
Φd(X)>

)
⇐⇒ Φd(X)>U⊥ = 0 (5.6)

for any U⊥ ∈ St(N,N − r) such that range(U⊥) = U⊥. The columns of U⊥, viewed as

coefficients in the monomials basis ϕd, define N − r linearly independent polynomials of

n variables. Consider the algebraic variety VU⊥ , which is defined by these polynomials.

Naturally, the variety VU⊥ does not depend on the choice of U⊥ as a basis for the subspace

U⊥. Using Equation (5.2) and (5.6), we deduce that

‖Φd(X)− PUΦd(X)‖F = 0 if and only if xi ∈ VU⊥ for all i = 1, . . . , s (5.7)

where x1, . . . , xs denote the columns of X ∈ Rn×s.

104

For a given M̂ , solving (5.5) is expected to return a point (X,U) such that the quantity

‖Φd(X)− PUΦd(X)‖F is small, but not necessarily zero. In that case, the variable U⊥

defines an algebraic variety VU⊥ , and the columns of X approximately belong to that

variety. Let {p1, . . . , pq} be the polynomials that define the algebraic variety VU⊥ , whose

coefficients are given by U⊥ =
[
u⊥1 u⊥2 · · · u⊥q

]
∈ RN×q in the monomial basis, with

q = N − r. The residual expresses the least square error of the polynomial system that

defines the algebraic variety VU⊥ , calculated for every column of X:

‖Φd(X)− PUΦd(X)‖2
F =

∥∥U>⊥Φd(X)
∥∥2

F
=

s∑
i=1

q∑
j=1

((u⊥j)>ϕd(xi))
2 =

s∑
i=1

q∑
j=1

pj(xi)
2. (5.8)

Hence, despite the presence of noise, our approach allows recovery of the polynomial

equations of an algebraic variety that the data approximately belongs to. Recovering

the equations of the variety that the data belongs to is instrumental for the next section,

where we estimate a transformation such that two algebraic varieties overlap (Section 5.2).

Choosing an estimate of the rank

In order to solve the denoising problem (5.5), an estimate of the rank of Φd(M) must

be available. The rank of Φd(M) depends in a complex way on the intrinsic dimension

of the variety and the degree d. This makes it difficult to know the rank a priori from

M̂ . Upper bounds exist based on the dimensions of the algebraic variety (Cox et al.,

1994). Specific information about the problem can often help in finding an estimate of

the rank. If the algebraic variety is a surface of dimension n− 1 in Rn that is described

by one polynomial equation, then r = N − 1. The next section provides an estimation

of the mean square error of the recovery in the case of Gaussian noise, which gives an

estimation of the error at a solution which is obtained for a given value of the rank.

5.1.4 Statistical error estimation

In this section, we assume that the noise perturbation ω in (5.1) follows a normal distri-

bution, namely, for some σ > 0, every entry ωij ∼ N (0, σ2). Let
(
X∗(M̂),U∗(M̂)

)
be an

isolated local minimizer of (5.5) for a given matrix M̂ . We view X∗(M̂) as an estimator of

M and use Stein’s unbiased risk estimate (SURE) to estimate the error of our denoising

procedure (Stein, 1981). The expected error is defined as R = Eω
[∥∥∥M −X∗(M̂)

∥∥∥2

F

]
,

where the expectation is taken over realizations of ω. Based on (Stein, 1981), we have

R̂ =
∥∥∥M̂ −X∗(M̂)

∥∥∥2

F
− nsσ2 + 2σ2

n∑
i=1

s∑
j=1

∂X∗ij(M̂)

∂M̂ij

, (5.9)

105

as an unbiased estimate for R, i.e. E(R̂) = R. The estimate R̂ is called Stein’s un-

biased risk estimate (SURE). The quantity
∑n

i=1

∑s
j=1 ∂X

∗
ij(M̂)/∂M̂ij is known as the

divergence of X∗(M̂) and describes the sensitivity of the solution to the input data. It

measures the complexity of the model, that is, it’s tendency to overfit the data (Ghojogh

and Crowley, 2019, Eq. 33). For the sake of example, if a point cloud is approximated

by a line in the least square sense. Slightly modifying a point in the training set will

have little effect on the regression, because the model is not complex and is underfitting.

On the other hand, if a regression model were to pass through all the data points, it

would change noticeably with a change in the training set, this model is very complex

and overfitting. In this simple example, the first regression has a small divergence and

the second model has a sensibly larger divergence.

We propose the use of SURE as an alternative to cross validation to evaluate the

estimation error and detect the possibility of overfitting. For monomials of degree 2,

which we use predominantly, the model is simple and the likelihood of overfitting is

small. Estimating the generalization error with formula (5.9) is most useful to estimate

the error for various model parameters such as the degree d and the rank r, without

having to resort to a cross validation procedure.

To compute the divergence in the context of Problem (5.5), we use a version of the

implicit function theorem for functions defined on manifolds. For a smooth map F : M1×
M2 → M3, we write D1F and D2F for the differential of F , as defined in (2.2), with

respect to its first and second argument, respectively.

Theorem 5.1 ((Abraham et al., 2012), Prop. 3.3.13). Let M1,M2,M3 be manifolds.

Let F : M1 ×M2 →M3 be smooth and let (x0, y0) ∈ M1 ×M2 with F (x0, y0) = 0. If

D2F (x0, y0) is invertible, there exists open neighbourhoods V1 of x0 in M1 and V2 of y0

in M2, and a smooth function g : V1 → V2 such that for all x ∈ V1, F (x, g(x)) = 0. In

addition,

Dg(x0) = − (D2F (x0, y0))−1 D1F (x0, y0).

Recall that the root mean square error is defined by RMSE = ‖M −X∗‖F /
√
ns.

Proposition 5.2. Let the noise ω ∼ N (0, σ2) for some given σ ≥ 0 and consider(
X∗(M̂),U∗(M̂)

)
, an isolated local minimizer of the function f defined in (5.5) for a

given M̂ . Stein’s Unbiased risk estimate of the RMSE is given by

SURE :=

√
R̂/ns (5.10)

where R̂ is computed as in (5.9) with

∂X∗(M̂)

∂M̂
= −

[
∇2
XXf(X,U ; M̂)

]−1 ∂

∂M̂

(
∇Xf(M̂, g(M̂); M̂)

)
. (5.11)

106

where
∂

∂M̂ij

(
∇Xf(M̂, g(M̂); M̂)

)
= −2λ∆ij

and ∆ij ∈ Rn×s has entry (i, j) equal to one and the other entries are zero.

Proof. For readability, we write (X∗,U∗) for
(

(X∗(M̂),U∗(M̂)
)

. Recalling that M =

Rn×s ×Grass(N, r), we define F : Rn×s ×M→ TM by

F (M̂,X,U) = gradMf(X,U ; M̂) =

[
∇Xf(X,U ; M̂)

gradUf(X,U ; M̂)

]
. (5.12)

where ∇Xf(X,U ; M̂) ∈ Rn×s is the Euclidean gradient of f with respect to X ∈ Rn×s

and gradUf(X,U ; M̂) ∈ TUGrass(N, r) is the Riemannian gradient which belongs to

the tangent space of Grass(N, r) at U . First-order necessary optimality conditions for

Problem (5.5) can be stated as

F (M̂,X,U) = 0.

We apply Theorem 5.1 to the function F , with the identification of the variables M̂ ∈
M1 = Rn×s and z = (X,U) ∈ M2 = M = Rn×s × Grass(N, r). The theorem ap-

plies to derivatives as abstract objects defined by tangent vectors. In particular, affine

connections (Definition 2.14) — including the Riemannian connection — satisfy the ax-

ioms of derivatives. When applying this theorem to the function F defined in Equa-

tion (5.12), we may view the derivative of a vector field as the covariant derivative as-

sociated to the Riemannian connection. Therefore, the derivative of the map F with

respect to its second variable z ∈ M, is given by the Riemannian Hessian of f , that is,

D2F (M̂,X,U) = HessMf(X,U ; M̂). Therefore, if HessMf(X∗,U∗; M̂) is invertible, there

exists an open set V1 ∈ Rn×s and a map g : V1 → M such that g(M̂) = (X∗,U∗) and

F (M̂, g(M̂)) = 0. Also,

∂g(M̂)

∂M̂
=

∂

∂M̂

(
(X∗(M̂),U∗(M̂)

)
= −

[
HessMf(X∗,U∗; M̂)

]−1
[
∂F (M̂, g(M̂))

∂M̂

]
.

(5.13)

If (X∗,U∗) is an isolated minimizer of (5.5), the matrix Hessf(X∗,U∗) is positive defi-

nite and therefore invertible. In order to compute ∂F (M̂, g(M̂))/∂M̂ , we see from the

definition of f(X,U ; M̂) (5.5) that gradUf(X,U ; M̂) does not depend on M̂ and that

∇Xf(M̂, g(M̂); M̂) depends on M̂ through the term 2λ(X − M̂). Thus, we have

∂

∂M̂

(
gradUf(M̂, g(M̂); M̂)

)
= 0 (5.14)

and
∂

∂M̂ij

(
∇Xf(M̂, g(M̂); M̂)

)
= −2λ∆ij

107

with where ∆ij ∈ Rn×s has entry ij equal to one and the other entries are zero. Us-

ing (5.14), the upper block of (5.13) reads

∂X∗(M̂)

∂M̂
= −

[
∇2
XXf(X,U ; M̂)

]−1 ∂

∂M̂

(
∇Xf(M̂, g(M̂); M̂)

)
.

This gives (5.11), and (5.10) follows from the definition of the RMSE and (5.9).

5.1.5 Numerical results

In this section, we numerically evaluate the performance of our denoising approach.

Our code for the denoising of algebraic varieties can be found at https://github.com/

flgoyens/variety-denoising, with implementations in both Matlab and Python. We

use the Manopt (Boumal et al., 2014) and Pymanopt (Townsend et al., 2016) toolboxes

for the Matlab and Python versions of the code, respectively. The RTR solver (Algo-

rithm 2) in the toolbox is used with default parameters on problem (5.5). The numerical

examples in this section were generated using the Matlab version of our code. The al-

gorithm was set to stop when the norm of the Riemannian gradient in (5.5) was smaller

than 10−6. For an output of the algorithm, labelled (X∗,U∗), we define

RESIDUAL = ‖Φd(X
∗)− PU∗Φd(X

∗)‖2
F ,

which is interpreted, according to (5.8), as the least squares infeasibility for the system

of polynomial equations of the algebraic variety VU∗⊥ , calculated for every column of X∗.

The RESIDUAL tells us how close the columns of X∗ are to some algebraic variety.

The RMSE tells us how close X∗ is to the original matrix M . We begin with synthetic

examples as a proof of concept.

Synthetic examples

Example 1: Denoising a circle We generate a point cloud M̂ ∈ R2×150 as a noisy

corruption of a set of points on the unit circle using σ = {10−3, 10−2, 10−1, 2 · 10−1} for

the standard deviation of the noise (M̂ in red in Figure 5.2). We use a degree of 2 for the

features and notice that the solution X∗ (blue) reached by the optimization algorithm is

close to the original circle even for a visually large noise. For σ = 10−2 and σ = 2 · 10−1,

the RESIDUAL reaches values of 10−9 and 10−5, respectively. The solver’s output X∗

is therefore very well approximated an algebraic variety. This example also makes it

clear that the approach is more general than a classical least-squares polynomial approx-

imation, as the approximation does not need to be the image of a polynomial function.

Table 5.1 reports the RMSE and Stein’s Unbiased Risk Estimate (5.10). This shows that

SURE accurately predicts the RMSE and that the RMSE increases proportionally with

the standard deviation of the noise.

108

https://github.com/flgoyens/variety-denoising
https://github.com/flgoyens/variety-denoising

−1.0 −0.5 0.0 0.5 1.0 1.5

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

x2+ y2=1
M̂
X ̂

(a) σ = 10−2

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5

−1.0

−0.5

0.0

0.5

1.0
x2+ y2=1
M̂
X ̂

(b) σ = 10−1

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

−1.0

−0.5

0.0

0.5

1.0

1.5 x2+ y2=1
M̂
X ̂

(c) σ = 2 · 10−1

Figure 5.2: Denoising a circle.

Example 2: Denoising a union of two subspaces In Figure 5.3, we denoise a

point cloud which is near the union of two subspaces with σ = {10−3, 10−2, 10−1} for the

standard deviation of the noise. This shows that the algebraic variety doesn’t need to

be a smooth set. It is an algebraic variety described by polynomial equations of degree

2 (since there are two subspaces), hence we use monomial features of degree 2. For

σ = 10−2, the output satisfies RESIDUAL = 3 · 10−10. Table 5.2 reports the RMSE and

Stein’s unbiased risk estimate.

Noise σ 10−3 10−2 10−1 2 · 10−1

SURE 5.49 · 10−4 6.76 · 10−3 5.69 · 10−2 1.22 · 10−1

RMSE 6.77 · 10−4 8.53 · 10−3 7.52 · 10−2 1.44 · 10−1

Table 5.1: SURE for denoising of a circle

109

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

(a) σ = 10−3

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

(b) σ = 10−2

-1.5 -1 -0.5 0 0.5 1 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

(c) σ = 10−1

Figure 5.3: Denoising a nonsmooth algebraic variety.

Dental Tomography Scans

Through industrial partners, we received a data set of dental X-ray computed tomography

scans (XCT). This was part of the original motivation for this research. These scans are

composed of a very large number of points, on the order of several millions. It is desirable

to remove the noise before they can be processed. Figure 5.4 shows an example of the

dental scans available. The point cloud has been randomly subsampled to make it less

dense and possible to visualize. The remaining point cloud has dimension 3× 2048, so it

is less large.

For complex data sets, such as dental scans, it may not be obvious which degree of the

Noise σ 10−3 10−2 10−1

SURE 7.05 · 10−4 6.32 · 10−3 7.04 · 10−2

RMSE 7.10 · 10−4 6.98 · 10−3 7.37 · 10−2

Table 5.2: SURE for denoising of a union of subspaces

110

Figure 5.4: Tomographic dental scans (subsampled)

features will yield the best result. In theory, increasing the degree should give a model

with more degrees of freedom and a better fit. The dimension of N of feature space

increases approximately as nd/d!. As N increases, the number of samples s necessary

for the approach to work also increases, as described on page 56. Indeed, if s ≤ N − q
where q is the number of equations that define the variety, the matrix Φd(M) will not

be rank-deficient. In short, increasing the degree requires an exponentially increasing

number of samples s, which directly increases the dimension of the optimization prob-

lem. Additionally, ill-conditioning may appear when the degree d becomes large, because

Φd(X) is a multivariate Vandermonde matrix. Therefore, we try values of d going from

1 to 5 and choose the one that yields the best result, which is usually d = 2 in practice.

Example 3: approximation of a dental scan by an algebraic variety Figure 5.5

shows an XCT scan in red and the output of the algorithm in blue. The value RESIDUAL

has been reduced from the order of 1 to the order of 10−3 by the algorithm, and X∗ is

therefore closer to an algebraic variety than M̂ . Since no noise was artificially added, the

value of σ for the noise that represents the mismatch between the real dental scan and

the algebraic variety model is unknown. For a value of σ = 10−2, the output satisfies

SURE = 0.21.

Figure 5.5: Original point cloud and denoised version

111

5.2 Registration

The registration problem consists in aligning point clouds using a specific set of transfor-

mations. The problem of point cloud registration has applications in a number of fields,

including computer vision (Sharp et al., 2004; Tzeneva, 2011; Williams and Bennamoun,

2000), in distributed approaches to molecular conformation (Cucuringu et al., 2012b;

Fang and Toh, 2013; Biswas et al., 2008), sensor network localization (Cucuringu et al.,

2012a; Biswas et al., 2006) and aligning data from magnetic resonance imaging with

computer-aided tomography scans (Hill et al., 1991; Studholme et al., 1995). It can be

instrumental in merging multiple data sets into a globally consistent model or mapping

a new measurement to a known data set. Surveys of this topic can be found in (Huang

et al., 2021; Bellekens et al., 2014). We describe some of the main approaches.

Related work

Several approaches have been devised for the various types of registration problems that

appear in image and pattern analysis. Registration algorithms can be classified into

rigid and non-rigid approaches. The rigid registration is concerned with finding affine

transformations that preserve distances, typically rotations and translations. The non-

rigid registration problem includes finding affine transformations (which may include

scaling and a shear mapping) as well as non-linear transformations.

One of the earliest instances of registration in the literature is the (orthogonal) Pro-

cruste problem (Schönemann, 1966). Consider the orthogonal group

O(n) =
{
Q ∈ Rn×n : Q>Q = QQ>= In

}
,

which is a Riemannian manifold, as described in Section 2.9.4. Given two matrices

A,B ∈ Rn×s, one tries to find the orthogonal matrix Q∗ ∈ O(n) that best matches A to

B in Frobenius norm, that is,

Q∗ = arg min
Q∈O(n)

‖QA−B‖F .

This problem is equivalent to finding the nearest orthogonal matrix to BA>,

Q∗ = arg min
Q∈O(n)

∥∥Q−BA>∥∥
F
,

which, given the singular value decomposition BA>= UΣV >, is Q∗ = UV >.

A natural extension is to consider a transformation which combines an orthogonal

matrix with a translation. Consider two point clouds M1 = {x1, . . . , xs} and M2 =

112

{y1, . . . , ys} in Rn, respectively called the source and the target point clouds, as one is

obtained through a rigid transformation of the other:

yk = Qxk + a k = 1, . . . , s, (5.15)

where Q ∈ O(n) is an orthogonal matrix and a ∈ Rn is a translation vector. In this

setting, exact point matching is assumed: the two point clouds have the same number

of samples and each sample matches with one and only one sample from the other point

cloud. This leads to the following least squares problem

(Q∗, a∗) = arg min
Q∈O(n),a∈Rn

s∑
k=1

‖yk −Qxk − a‖2
2 . (5.16)

The optimization over O(n)×Rn seems difficult since the set O(n) is nonconvex. Remark-

ably, there exists a closed-form solution for the global minimizer of (5.16). Arun et al.

(1987) show that the optimal orthogonal matrix is given by Q∗ = UV > where UΣV > is

the SVD of

s∑
k=1

(xk − xc)(yk − yc)>,

with xc = (x1 + · · · + xs)/s and yc = (y1 + · · · + ys)/s, the centroids of the two point

clouds. The optimal translation is a∗ = yc − Q∗xc. In the case of three or more point

clouds to align, no closed-form solution is known. Krishnan et al. (2005) consider such

case of multiple point clouds using a rigid transformation and exact point matching. They

propose to solve a single optimization problem with one variable on SO(n) for each point

cloud. Chaudhury et al. (2015) also consider an arbitrary number of point clouds and

show how the least square formulation, which generalizes (5.16) to several point clouds,

can be relaxed into a convex program, with guarantees of tightness.

These approaches, as well as the Procruste problem, require knowledge of the point

correspondence. That is, it is known at the outset which point from the target point

cloud corresponds to a given point in the source point cloud. In a number of practical

applications, the point correspondence is unknown. If exact point matching is assumed,

the crux of the problem then resides in finding the correct point correspondence. Indeed,

given the correspondence, the registration is solved using a single SVD to find the global

solution of the least squares problem (5.16).

The iterative closest point (ICP) algorithm, introduced in (Besl and McKay, 1992),

addresses the issue of unknown point correspondence. Assuming exact point matching,

the ICP algorithm performs rigid registration in an iterative fashion. The method repeats

the following two steps until the least squares error becomes smaller than some threshold:

113

1. find a point correspondence by using the nearest neighbour rule;

2. estimate a rotation and translation by solving (5.16) using a SVD.

In the original version of ICP, the matching in step 1 is determined by the nearest

neighbour criteria. For a point in M1, its corresponding point is the closest point from

M2 in Euclidean norm. Note that this may not produce a one-to-one matching. Because

the point correspondence changes throughout the iterations, it is difficult to establish

theoretical guarantees of convergence for the classical ICP algorithm. The use of the

least squares residual (5.16) yields a method referred to as point-to-point ICP and is

known to be sensitive to noise and outliers (Bellekens et al., 2014).

M1 (source)

x1

x2

x3

M2 (target)

y1
y2

y3

Figure 5.6: Point-to-point ICP.

Numerous adaptations of the original ICP algorithm have been proposed, impacting

all stages of the algorithm, which notably include finding the point correspondence and

the minimization approach to find the rigid transformation.

The point-to-plane ICP (also called point-to-surface) is one such adaptation (Chen

and Medioni, 1992). This modification takes the local neighbourhood of a corresponding

target point into account to modify the least squares residual in (5.16) and try to reduce

the algorithm’s sensitivity to noise. Assuming that the point clouds represent smooth

surfaces, it minimizes the distance between a source point and the linear approximation

of the point cloud at the corresponding target point. Concretely, in the point-to-plane

Figure 5.7: Point-to-plane ICP (Bellekens et al., 2014).

114

ICP the least square problem in step 2 is replaced by

(Q∗, a∗) = arg min
Q∈O(n),a∈Rn

s∑
k=1

| 〈yk −Qxk − a,nk〉 |2, (5.17)

where yk is the corresponding point to xk and nk is the normal vector to the linear

approximation of the point cloud at yk. This point-to-plane error metric does not have a

closed-form solution and is minimized using nonlinear least squares methods. Although

each iteration of the point-to-plane ICP is typically slower than an iteration of the point-

to-point ICP, the former displays a faster convergence rate in practice (Rusinkiewicz

and Levoy, 2001), as is predicted by theoretical analysis (Pottmann et al., 2004). An

approximation as a linear least squares for the point-to-plane ICP was proposed in (Low,

2004). Plane-to-plane error metrics have also been proposed, which minimize the distance

between the two tangent approximations around corresponding points. Generalized ICP

allows to leverage the covariance matrix of the point clouds (Segal et al., 2009). Variants

of ICP are summarized in (Rusinkiewicz and Levoy, 2001).

In the non-rigid registration paradigm, the transformation is no longer restricted to

the combination of a rotation and a translation. There exists a wide range of approaches

for the non-rigid registration which we do not cover in depth, as this chapter only con-

siders applications of rigid registration. Some of the popular approaches for non-rigid

registration include robust point matching (Gold et al., 1998); thin plate spline robust

point matching (Chui and Rangarajan, 2003); kernel correlation approach (Tsin and

Kanade, 2004) and coherent point drift (Myronenko and Song, 2010).

Our contribution and outline of the section

We attempt to find a rigid transformation between two point clouds, akin to (5.15) and

assume that the target and source point clouds belong to the same algebraic variety (up

to a change in coordinates). Our method does not assume that a point correspondence is

given, nor does it attempt to compute one. This avoids the convergence issues that stem

from the iterative estimation of a point correspondence. The transformation we compute

ensures that the image of the source samples by the rigid transformation belongs to

the algebraic variety of the target point cloud. This, conceptually, aligns the algebraic

varieties of the source and target point clouds.

In order to reduce the sensitivity to noise and outliers, variants of the ICP algorithm

minimize a point-to-plane or plane-to-plane metric using local linear approximations of

the point clouds. The approach described in this chapter can be considered as a point-

to-algebraic variety matching. Our residual does not measure the Euclidean distance

between a point and its corresponding point or the tangent plane at a corresponding

115

point. Rather, our residual is computed in the feature space, and, intuitively, measures

the distance between a source point and the algebraic variety that defines the target point

cloud. This also allows us to consider two point clouds of different sizes without discarding

samples, and seamlessly handle cases where the source point cloud only overlaps partially

with the target point cloud. These cases are difficult to handle for conventional, point-

to-point methods.

Additionally, we present the more realistic setting of noisy samples, which only satisfy

the algebraic variety model approximately. The variety denoising technique developed in

Section 5.1 is used as a preprocessing step, to identify an approximation of each point

cloud by an algebraic variety, which is then used to compute the rigid transformation.

For the noisy and noiseless case, we show numerical results on synthetic examples

which illustrate the efficiency and accuracy of our approach. We finally show that this

registration technique is applicable to complex data such as medical three-dimensional

scans.

5.2.1 Problem set up

Consider two algebraic varieties V1, V2 ⊂ Rn of the same degree d. We assume the

existence of a rigid transformation T : Rn → Rn that makes the varieties V1 and V2

overlap.

A11. There exists Q ∈ SO(n) and a ∈ Rn such that for all x1 ∈ V1, we have

T (x1) := Qx1 + a ∈ V2, (5.18)

where SO(n) =
{
Q ∈ Rn×n : Q>Q = In, det(Q) = 1

}
denotes the special orthogonal group.

Intuitively, V1 and V2 represent the same shape but in different coordinate systems. To

adhere to the terminology of registration, a matrix X ∈ Rn×s in this section represents a

point cloud in Rn. Each column of X is called a sample or data point. Let M1 ∈ Rn×s1 and

M2 ∈ Rn×s2 be composed of respectively s1 samples in V1 and s2 samples in V2. Given M1

and M2, our task is to estimate Q ∈ SO(n) and a ∈ Rn which define the transformation

T . The special orthogonal group SO(n), which consists of the set of rotations in Rn, can

be equipped with a Riemannian manifold structure which is outlined in Section 2.9.4. If

the transformation includes a reflection in addition to a rotation, the optimization should

be done over the connected component of O(n) with matrices of determinant −1, instead

of SO(n).

The samples of M1 ∈ Rn×s1 and M2 ∈ Rn×s2 are generated independently and it may

be that the point clouds that we wish to overlap have a different number of samples, i.e.,

s1 6= s2. The goal is therefore not to establish a point-to-point matching, but to ensure

116

that the varieties V1 and V2 — observed through the available samples in M1 and M2 —

overlap as best as possible.

M1

M2T ?

5.2.2 Registration as an optimization problem

Assume that the algebraic varieties V1, V2 have degree at most d and are described by

N−r linearly independent polynomial equations, for some value r < N . Also assume that

min(s1, s2) ≥ N(n, d), that is, each matrix contains more samples than the dimension

of the feature space. According to (5.7), since every column of M2 belongs to V2, there

exists a subspace UM2 ∈ Grass(N, r) such that∥∥Φd(M2)− PUM2
Φd(M2)

∥∥2

F
= 0,

and, additionally, the variety V2 is defined by polynomial equations of coefficients U⊥M2
∈

St(N,N − r) for any U⊥M2
such that range(U⊥M2

) = U⊥M2
. Thus, we can write V2 = VU⊥M2

in

the manner of (5.7), where VU⊥M2
is the variety defined by equations of coefficients U⊥M2

.

Denote the columns of M1 as m
(1)
1 ,m

(1)
2 , · · ·m(1)

s1 . We wish to find a rotation Q ∈ SO(n)

and a vector a ∈ Rn such that the points T
(
m

(1)
k

)
= Qm

(1)
k + a belong to V2 for all k.

This is satisfied whenever

s1∑
k=1

∥∥∥ϕd(Qm(1)
k + a)− PUM2

ϕd(Qm
(1)
k + a)

∥∥∥2

2
= 0,

where ϕd is the monomial features (Equation (3.15)). The distinction with the least

squares minimization (5.16) appears clearly. In this case, we do not minimize a point-to-

point distance; instead we want each sample of M1 to belong to V2 after application of

the transformation. This is equivalently written in matrix notation with the monomial

features applied column-wise:∥∥Φd(QM1 + a11×s)− PUM2
Φd(QM1 + a11×s1)

∥∥2

F
= 0,

where 11×s1 is a row vector of size s1 that is full of ones. This leads to the following

two-step strategy to identify the transformation between V1 and V2.

117

Step 1: Algebraic variety identification First, we identify the equations of the

algebraic variety V2 that the columns of M2 lie on:

UM2 =

{
min
U

‖Φd(M2)− PUΦd(M2)‖2
F

s.t. U ∈ Grass(N, r),
(5.19)

where Grass(N, r) denotes the Grassmann manifold, defined in Section 2.9.5, and PU

is the orthogonal projection on the subspace U . Note that UM2 , the global minimizer

of (5.19), is given by the r leading singular vectors of Φd(M2).

Step 2: Registration We are looking for a transformation defined by Q and a so that

the points Qm
(1)
k + a belongs to the algebraic variety V2. This is obtained by,

(Q∗, a∗) =


min
Q,a

∥∥Φd(QM1 + a11×s1)− PUM2
Φd(QM1 + a11×s1)

∥∥2

F

s.t. Q ∈ SO(n)

a ∈ Rn.

(5.20)

Remark 5.1. Another possibility would be to compute both steps at once,

min
U ,Q,a

‖Φd([M2, QM1 + a11×s1])− PUΦd([M2, QM1 + a11×s1])‖2
F

s.t. Q ∈ SO(n)

U ∈ Grass(N, r)

a ∈ Rn.

(5.21)

where [·, ·] concatenates two matrices column-wise. We found that this optimization prob-

lem is harder to solve in practice. Performing steps 1 and 2 separately is suitable because

we are able to estimate the subspace U , which defines the underlying algebraic variety,

from the samples of only one of the point clouds. Hence, problem (5.21) can be genuinely

decomposed in two steps.

Remark 5.2. Interestingly, the two-step approach is asymmetrical, in that M1 and M2

play the roles of the source and target point clouds, respectively. In situations where one

point cloud represents an object and the second point cloud only overlaps with a small

part of that object, it is preferable to use the larger point cloud as the target (labelled M2)

and the smaller one as the source (labelled M1).

Remark 5.3. Note that, for the registration problem (5.20), it is not possible to use the

monomial kernel to represent the monomial features. The monomial kernel is rotation

invariant, i.e. Kd(QX,QX) = Kd(X,X) for any Q ∈ SO(n).

118

Riemannian optimization and software

The (noiseless) registration procedure we propose consists in solving (5.19) and (5.20)

in succession. Both of these steps require minimizing a smooth, scalar-valued function

on a Riemannian manifold, a subject that is discussed in Chapter 2. The Grassmann

manifold Grass(N, r), the special orthogonal group SO(n) and the Euclidean space Rn,

which appear in Problems (5.19) and (5.20), can be equipped with a Riemannian manifold

structure necessary to apply optimization methods. These are outlined in Section 2.9.

We use a second-order Riemannian trust-region (Algorithm 2). In this noiseless setting,

the point clouds belong exactly to an algebraic variety and Problem (5.19) is solved by

a truncated singular value decomposition of the features matrix. For Problem (5.20), we

use a random initial rotation Q ∈ SO(n) and translation a ∈ Rn with ‖a‖2 = 1. The

stopping criterion is set to trigger when the norm of the Riemannian gradient is below

10−6.

5.2.3 Numerical results for noiseless registration

Our code for the registration problem is available in Python at https://github.com/

flgoyens/variety-registration. In the numerical examples that follow, the default

implementation of RTR from PyManopt was used where the full Riemannian Hessian

is computed through automatic differentiation (Townsend et al., 2016). This section

illustrates the efficiency of our approach to identify a rigid transformation between two

quadratic curves or surfaces using the monomial features of degree d = 2. The given

point clouds M1,M2 belong exactly to the varieties and no noise is added at this point.

The rank is set to r = N −1, since the points clouds are described by a single polynomial

equation. The quality of the solution (Q∗, a∗) returned by the solver is assessed using the

following residual:

RESIDUAL =
∥∥Φd (Q∗M1 + a∗11×s1)− PUM2

Φd (Q∗M1 + a∗11×s1)
∥∥2

F
,

which can be interpreted using (5.8). The residual measures how accurately the image

by the rigid transformation of the samples in M1 satisfies the polynomial equations of

the algebraic variety identified from the target point cloud M2. We emphasize that

the measure ‖Q∗M1 + a∗11×s1 −M2‖2
F is meaningless. We are not trying to match data

points from different point clouds together, we aim for the underlying algebraic varieties

to overlap. Additionally, this measure is undefined for point clouds of different sizes. In

Figures 5.8 and 5.9, the upper image shows the two point clouds of input, and the lower

image shoes the output of the algorithm.

119

https://github.com/flgoyens/variety-registration
https://github.com/flgoyens/variety-registration

Example 4 In Figure 5.8, the initial point clouds have dimensions M1 ∈ R2×20 and

M2 ∈ R2×30. Note that they have different sizes. The samples in M2 are randomly

generated as points that satisfy the quadratic x 7→ x2. The samples in M1 originate from

a rotated and translated version of that curve, for some randomly generated rotation and

translation which we attempt to recover. The algorithm’s output has RESIDUAL ≈ 10−7.

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0

0

2

4

M1
M2

−7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
0

2

4

QM1+ a
M2

Figure 5.8: Registration for a quadratic curve in R2.

Example 5 In Figure 5.9, the data is on a quadratic surface in R3. The input data has

dimensions M1 ∈ R3×200, M2 ∈ R3×200. The result satisfies RESIDUAL ≈ 10−7.

These numerical results illustrate that our approach successfully finds an accurate

rigid transformation in these simple cases. Due to the nonconvexity of SO(n) and the

random initialization of the algorithm, the solver sometimes fails to find the correct

transformation and appears to find a local minimum. We then restart the registration

problem (5.20) with a new random initial guess, and report that this usually finds the

global minimum under five attempts. This is likely helped by the fact that registration

problems are most often considered in R2 or R3, and the dimension of the search space

is small.

120

−4 −2 0 2 4 −6 −4
−2 0 2

−10
−5
0
5
10

M1
M2

−3 −2 −1 0 1 2 −3−2
−1 0

1 2 3
02
46
810
12

QM1+ a
M2

Figure 5.9: Registration for a quadratic surface in R3.

5.2.4 Noisy registration

We consider the more practical setting where the samples available are corrupted by noise,

that is, they are close to an algebraic variety, but may not belong to one exactly. As in

the denoising problem, the noise may be interpreted as the mismatch between a practical

data set and the algebraic variety model. Let M1, M2 belong to the same algebraic variety

(up to a change of coordinates) as in the previous section. We are now given two point

clouds M̂1 and M̂2, which are noisy versions of M1 and M2:

M̂1 = M1 +ω1

M̂2 = M2 +ω2,

where ω1,ω2 are noisy perturbations following the same distribution, with ‖ω1‖F �
‖M1‖F and ‖ω2‖F � ‖M2‖F. Given M̂1 and M̂2, the goal is to find a rigid transformation

T : Rn → Rn such that T (M1) andM2 overlap. To achieve this, we first attempt to recover

M1 and M2 from M̂1 and M̂2, by solving the denoising problem (5.5), in the manner of

121

Section 5.1. This yields estimates X1 and X2, along with subspaces U1 and U2 which

define the algebraic varieties that X1 and X2 (approximately) belong to. The second step

estimates a transformation T such that T (X1) belongs to the algebraic variety identified

for X2.

Step 1: Algebraic variety identification and denoising

(X1,U1) :=

arg min
X,U

‖Φd (X)− PUΦd (X)‖2
F + λ

∥∥∥X − M̂1

∥∥∥2

F

U ∈ Grass(N, r).

(5.22)

(X2,U2) :=

arg min
X,U

‖Φd (X)− PUΦd (X)‖2
F + λ

∥∥∥X − M̂2

∥∥∥2

F

U ∈ Grass(N, r).

(5.23)

Step 2: Registration

(Q∗, a∗) :=


min
Q,a

‖Φd (QX1 + a11×s1)− PU2Φd (QX1 + a11×s1)‖2
F

Q ∈ SO(n)

a ∈ Rn.

(5.24)

Steps 1 and 2 are solved with the Riemannian trust-region method (Algorithm 2),

with the same settings as in the noiseless case. The notable difference with the noiseless

case is that calculating the SVD of Φd(M̂i) does not give the global minimizer of Step 1.

The noisy case requires to solve Problem (5.5), an algebraic variety denoising problem.

Recall from Section 5.1 that the nonconvexity of (5.22) and (5.23) does not seem to cause

problems in practice for the denoising. Indeed, very good initial guesses are available for

the variables X and U , in M̂i and the r first singular vectors of Φd(M̂i) respectively. For

the registration step (5.24), we do not assume any prior information on the transformation

T and initialize with a random rotation and random vector a of unit norm.

5.2.5 Numerical results for noisy registration

We demonstrate the efficiency of our registration approach on a dental scan and synthetic

test problems which do not satisfy the algebraic variety model exactly. We consider

examples on the quadratic curve x 7→ x2 in R2 as these examples are easier to visualize

than in R3. Matrices M1 and M2 are generated as in the noiseless case, as point clouds

that belong to the quadratic curve. We then add random matrices of Gaussian noise

ω1,ω2 ∼ N (0, σ2) which yields matrices M̂1 and M̂2. In the noisy setting, the residual is

now measured using the denoised point clouds, labelled X1 and X2:

RESIDUAL = ‖Φd (Q∗X1 + a∗11×s1)− PU2Φd (Q∗X1 + a∗11×s1)‖2
F .

122

Example 6 In Figure 5.10, the standard deviation of the noise is σ = 5 · 10−2 and

the algorithm’s output satisfies RESIDUAL ≈ 10−4. As usual, the top figure shows the

initial noisy data and the bottom figure shows the algorithm’s output, after denoising

and computation of the registration. We see that despite the presence of noise in the

original data, the transformation is well estimated to create an overlap.

−10 −5 0 5 10 15 20

−2.5

0.0

2.5

5.0

7.5 M̂1

M̂2

−10 −5 0 5 10
0

2

4

6

8 QX1̂ a
X2

Figure 5.10: Noisy registration with σ = 5 · 10−2

Example 7 In Figure 5.11, the magnitude of the noise is increased to σ = 10−1 and

the output satisfies RESIDUAL ≈ 10−2. The transformation is again estimated correctly,

with the residual increasing proportionally to the magnitude of the noise. We now show

examples where there is a partial overlap between the source and target point clouds.

Example 8: partial overlap In 5.12 and 5.13, the point cloud M̂1 only overlaps with

a small part of M̂2. The noise levels are of σ = 10−2 and σ = 10−1 and give RESIDUAL

values of 10−4 and 10−2, respectively.

Example 9: no overlap In Figure 5.14, we push things even further and show that

the registration may be possible even in cases where there is no overlap between the

point clouds. The registration is possible provided that the samples belong to a common

algebraic variety. The noise level is set to σ = 10−2 and RESIDUAL ≈ 10−4.

123

−6 −4 −2 0 2 4
0

1

2

3

4
M̂1

M̂2

−6 −4 −2 0 2 4 6
0

1

2

3

4 QX1̂ a
X2

Figure 5.11: Noisy registration with σ = 10−1

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6 M̂1

M̂2

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6 X2
QX1̂ a

Figure 5.12: Noisy registration with σ = 10−2 and partial overlap

Example 10: registration of dental scan Let us now consider a practical data set,

a computed tomography (CT) dental scan of dimension 3× 2048. The data is naturally

noisy, as the scan is not precisely defined by an algebraic variety. Nevertheless, we see

that the approximation by a variety allows us to estimate with some level of accuracy the

rigid transformation that was generated between two identical versions of the scan. We

use a degree d = 2 for the monomial features which yields the best result. The output of

124

−10 −5 0 5 10

0

2

4

6 M̂1

M̂2

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5 10.0
0

2

4

6 X2
QX1̂ a

Figure 5.13: Noisy registration with σ = 10−1 and partial overlap

−5 0 5 10
0

2

4

6
M̂1

M̂2

−10.0 −7.5 −5.0 −2.5 0.0 2.5 5.0 7.5
0

2

4

6 QX1̂ a
X2

Figure 5.14: Noisy registration with σ = 10−2 and no overlap

the solver gives RESIDUAL ≈ 10−1.

125

Figure 5.15: Registration for dental scan.

5.3 Conclusions

In this chapter, we present a framework which leverages the relationship between algebraic

varieties and the monomial map for the approximation and denoising of point clouds. The

features approach offers a conceptually appealing way to perform denoising on algebraic

varieties and numerical results show great accuracy in the recovery for various noise

levels, with a theoretical estimate of the accuracy using Stein’s unbiased risk estimate.

The main characteristics of the approach are that the approximation is global and it is

able to identify the polynomial equations that define the algebraic variety from a noisy

set of points on the algebraic variety. The use of second-order Riemannian optimization

methods allows to achieve high accuracy.

The algebraic variety model is then further exploited for the registration problem,

where we show numerical evidence that we are able to overlap point clouds which are

approximated by algebraic varieties. We observe some robustness to noise and the method

performs even on complex data such as dental scans. One advantage of our approach over

common algorithms for rigid registration is that we do not assume exact point matching

and our method achieves good results even in cases of partial overlap between the two

point clouds. The main limitation is that our method may behave poorly on point clouds

which cannot be approximated by an algebraic variety.

For both problems, future research directions include the improvement of the scala-

bility of the algorithm with respect to the number of data points s, as well as the use

126

of polynomial features of higher degree. A current limitation of our implementation is

that it works best when using polynomial features of degree 2, even for complex data

sets such as dental scans. As explained on page 56, the dimension of the feature space

N(n, d) as well as the number of data points necessary increases exponentially with the

degree d of the polynomial features. The exponential increase in the dimension with d

makes the problems much harder to solve for increasing degrees as large as 3 or 4. Despite

this fact, it would be worthwhile to develop tools to tackle problems of larger scale and

reach better results for a degree higher than two, which likely also requires to use a dif-

ferent polynomial basis than the monomials. This should improve the conditioning of the

features matrix and avoid the notorious ill-conditioning of Vandermonde matrices. The

dimension of the feature space could also potentially be reduced using low-dimensional

representations of the features or the kernel, in the spirit of (Rahimi et al., 2007).

The scalability of the algorithm with respect to the number of data points s may also

be improved. The cost functions in (5.5) and (5.24) can be written as a finite sum over

the columns of the matrices involved. This allows to use stochastic variants of classical

optimization methods, where the derivatives are approximated by subsampling a batch

of terms in the sum at each iteration, in the spirit of (Kohler and Lucchi, 2017; Xu et al.,

2020). This would allow to process a larger number of data points.

127

Chapter 6

Equality constrained optimization

Working over a Euclidean space E with inner product 〈·, ·〉 and associated norm ‖·‖, we

consider the constrained optimization problem

min
x
f(x) subject to h(x) = 0, (P)

where f : E → R and h : E → Rm are smooth. The feasible set is denoted by

M = {x ∈ E : h(x) = 0}.

The analysis of global complexity for equality constrained problems has attracted a

lot of attention in recent years. Indeed, it is desirable to establish the worst-case num-

ber of iterations that an algorithm requires to achieve approximate criticality. Usually,

approximate first- or second-order critical points are sought. In the presence of equality

constraints, various definitions of approximate second-order critical points are present in

the literature, which makes the comparison of different methods difficult. In this chapter,

we propose a definition of approximate second-order criticality for (P), which attempts

to unify these different definitions. Our condition is based on optimality conditions for

optimization on Riemannian manifolds, defined in Section 2.5. It has a natural geomet-

ric interpretation using the Riemannian Hessian of the cost function on a manifold near

the feasible set M. Our main contribution, which is mostly of a theoretical nature, is

an algorithm which computes such approximate second-order critical points with optimal

worst-case iteration complexity for an arbitrary initialization. This rate is sharp, meaning

that no second-order method can achieve a better performance in the worst case. This

is achieved by minimizing a smooth penalty function known as Fletcher’s augmented

Lagrangian, introduced in (Fletcher, 1970).

In Section 6.2, we review recent works with complexity analysis for constrained prob-

lems and discuss how our results and assumptions differ from the existing literature.

We devote particular attention to various notions of approximate second-order criticality

128

that have been used in recent works for constrained problems. Section 6.3 establishes

properties of Fletcher’s augmented Lagrangian, whose relevance goes beyond the study

of worst-case complexities. Most notably, we establish a correspondence between ap-

proximate minimizers of Fletcher’s augmented Lagrangian and approximate minimizers

of (P). We present our algorithm in Section 6.4, which features first- and second-order

versions. Section 6.5 shows that a key assumption made early in the chapter can be

lifted. Namely, it is possible to estimate a suitable value for the penalty parameter while

retaining the global convergence rates of the original algorithm (up to a logarithmic fac-

tor). Section 6.1 outlines the main components of our approach and the assumptions

we make on problem (P). We explain that, under regularity assumptions, our approach

builds on Riemannian optimization concepts. Most notably, the Riemannian viewpoint

gives meaning to our approximate criticality conditions.

6.1 Introduction

6.1.1 Assumptions

We introduce three central assumptions about the set M. Define the set

D = {x ∈ E : rank(Dh(x)) = m}. (6.1)

It is known that if M is included in D then M is a (smooth) embedded submanifold of

E (Absil et al., 2008). We further assume that there is a region around M where the

differential of the constraints is nonsingular. Let ‖·‖ denote the usual norm on Rm.

A12. There exist constants R, σ > 0 such that for all x in the set

C = {x ∈ E : ‖h(x)‖ ≤ R} (6.2)

we have σmin(Dh(x)) = σm(Dh(x)) ≥ σ > 0 where σk(A) and σmin(A) denote the kth

and the smallest singular value of a linear map A, respectively. In particular, we have

rank(Dh(x)) = m.

A13. The sets M = {x ∈ E : h(x) = 0} and C = {x ∈ E : ‖h(x)‖ ≤ R} are compact.

A14. There exists a constant Ch > 0 such that, for all x ∈ C and v ∈ E,

h(x+ v) = h(x) + Dh(x)[v] + E(x, v)

with ‖E(x, v)‖ ≤ Ch‖v‖2.

The set C is our region of interest. If Algorithm 7 enters that region, then it stays in

it. Accordingly, we make the following assumption.

129

A15. The initial iterate x0 belongs to C.

Note that affine constraints do not satisfy A13 and A14, but these constraints are

usually not problematic as there are various effective approaches to handle them, including

feasible methods. The two following examples show how to compute the constants R and

σ, which define the region of interest C, for the Stiefel manifold (see Section 2.9.3) and

for a convex quadratic constraint. The derivations can be found in Appendix A.2.

Example 6.1 (The Stiefel manifold). Let E = Rn×p, the Stiefel manifold is defined as

St(n, p) = {X ∈ Rn×p : X>X = Ip}.

The manifold corresponds to the defining function h : Rn×p → Sym(p) : X 7→ h(X) =

X>X − Ip, where Sym(p) is the set of symmetric matrices of size p. For any R < 1,

all X ∈ Rn×p such that ‖h(X)‖ ≤ R, satisfy σmin(Dh(X)) ≥ 2σmin(X) ≥ 2
√

1−R.

Therefore, A12 is satisfied for any R < 1 and σ ≤ 2
√

1−R.

Example 6.2 (Convex quadratic constraint). Let E = Rn and consider the set M for

h(x) = x>Ax+ b>x+ c, where A ∈ Rn×n is symmetric and positive definite, b ∈ Rn and

c ∈ R. For any R < |h(x∗)|, where x∗ is the minimizer of the quadratic, all x ∈ Rn

satisfy σmin(Dh(x)) > 0. Additionally, σ = minx∈C σmin(Dh(x)) > 0 by compactness of C.

6.1.2 Layered manifolds

Assumption A12 allows us to characterize any point in C as belonging to some Riemannian

submanifold. This manifold is defined by a level set of the function h, while the feasible set

M is the 0-set of h. This observation partitions the region of interest C into Riemannian

submanifolds which we call layered manifolds. These layered manifolds help to derive

meaningful criticality conditions for points which are nearly feasible.

Proposition 6.1 (Layered manifolds). Under A12, for any x ∈ C, the set Mx = {y ∈
E : h(y) = h(x)} is a submanifold of E contained in C. The tangent space and the normal

space of Mx at y ∈Mx are given respectively by:

TyMx = {v ∈ E : Dh(y)[v] = 0} and NyMx = span(Dh(y)∗) ,

where a star indicates an adjoint.

Proof. The setM = {y ∈ E : h(y) = 0} is an embedded submanifold of E if rank(Dh(y)) =

m for all y ∈M (Absil et al., 2008, Prop. 3.3.3). For some x ∈ C, one readily checks that

the set Mx = {y ∈ E : h̃(y) := h(y) − h(x) = 0} is also an embedded submanifold of E
owing to A12. For all y ∈ Mx, since y ∈ C, Dh(y) has full rank m and so does D(h̃(y)).

130

This implies thatMx is an embedded submanifold of E and the tangent spaces at y ∈Mx

is given by TyMx = {v ∈ E : Dh(y)[v] = 0}. At any y ∈ Mx, the normal space is the

orthogonal complement of the tangent space with respect to the inner product on E , that

is, NyMx = (ker Dh(y))⊥ = span(Dh(y)∗).

The embedded submanifoldMx for some x ∈ C is turned into a Riemannian subman-

ifold using the Euclidean inner product of E restricted to the tangent spaces of Mx. We

proceed to compute the Riemannian gradient and Riemannian Hessian of f on a layer

manifold. First, we define the function λ : E → Rm as follows:

λ(x) = (Dh(x)∗)†[∇f(x)], (6.3)

where a dagger indicates a Moore–Penrose pseudo-inverse. This function is particularly

relevant at points x such that Dh(x) has (full) rank m. If x ∈ E satisfies rank Dh(x) = m,

then the orthogonal projector from E to the tangent space TxMx = ker Dh(x) is given

in explicit form by

Projx(v) = v −Dh(x)∗[z] with z = (Dh(x)∗)†[v].

Based on the derivations in Section 2.9.6, we find that the Riemannian gradient of f on

Mx is given by

gradMx
f(x) = Projx(∇f(x)) = ∇f(x)−Dh(x)∗[λ(x)], (6.4)

the orthogonal projection of the Euclidean gradient of f to the tangent space TxMx and

the Riemannian Hessian of f on Mx is given by

HessMxf(x) = Projx ◦

(
∇2f(x)−

m∑
i=1

λi(x)∇2hi(x)

)
◦ Projx, (6.5)

a self-adjoint linear operator on TxMx.

For problem (P), the Lagrangian L(x, λ) : E × Rm → R is defined as

L(x, λ) = f(x)− 〈λ, h(x)〉 ,

where λ ∈ Rm is called the vector of multipliers. We also recall the augmented Lagrangian

Lβ : E × Rm → R for some penalty parameter β ≥ 0,

Lβ(x, λ) = f(x)− 〈λ, h(x)〉+ β‖h(x)‖2.

The augmented Lagrangian is a penalty function which has given rise to a number of pop-

ular methods for constrained optimization (Bertsekas, 1982). This allows us to introduce

Fletcher’s augmented Lagrangian, a penalty function which first appeared in (Fletcher,

1970).

131

Definition 6.1 (Fletcher’s augmented Lagrangian). Fletcher’s augmented Lagrangian,

which we write g, is defined as

g(x) = Lβ(x, λ(x)). (6.6)

where λ(x) is defined in (6.3).

We note that the set D (Equation (6.1)) is open, and it is easy to verify that λ(·) is

C∞ on that set. We also note that, under A12, the set C is included in D. Therefore,

g is also smooth on C. Fletcher’s augmented Lagrangian is a smooth penalty which

depends only on x, the primal variable. The multipliers are computed as a function of

x. In Section 6.3, we derive meaningful relations between approximate minimizers of g

and minimizers of (P). Our main complexity result follows from the minimization of the

function g inside the set C.

6.1.3 Optimality conditions

We now go over exact and approximate criticality conditions for problem (P). First-order

critical points of (P) are defined by

h(x) = 0 and gradMf(x) = 0, (6.7)

whereas second-order critical points satisfy

h(x) = 0, gradMf(x) = 0, and HessMf(x) � 0. (6.8)

Proposition 6.2. Any local minimizer x ∈ E of (P), where Dh(x) has rank m, is a

second-order critical point.

This leads to our approximate optimality conditions for smooth equality constrained

problems.

Definition 6.2. The point x ∈ D is an (ε0, ε1)-approximate first-order critical point

of (P) if

‖h(x)‖ ≤ ε0 and
∥∥gradMx

f(x)
∥∥ ≤ ε1. (ε-FOCP)

Definition 6.3. The point x ∈ D is an (ε0, ε1, ε2)-approximate second-order critical point

of (P) if

‖h(x)‖ ≤ ε0,
∥∥gradMx

f(x)
∥∥ ≤ ε1 and HessMxf(x) � −ε2 Id . (ε-SOCP)

132

The notions of (ε-FOCP) and (ε-SOCP) have a natural geometric interpretation.

For a point x ∈ C which is nearly feasible, the criticality is assessed with respect to the

manifold layer to which x belongs. In essence, x satisfies the usual approximate criticality

conditions for a Riemannian optimization problem, i.e., small Riemannian gradient and

almost positive semidefinite Riemannian Hessian. However, these conditions are satisfied

on the tangent space of a layer manifold Mx rather than on the target manifold M.

In Section 6.3, we show that approximate first- and second-order critical points of g are

related to (ε-FOCP) and (ε-SOCP) of (P), provided that the penalty parameter β is

large enough. Section 6.4 presents an algorithm that minimizes g (Algorithm 7), and

in so doing finds points which satisfy (ε-FOCP) and (ε-SOCP) for (P). We present an

informal version of the main complexity result of this chapter. For the complete statement

and proof, see Theorem 6.17.

Theorem 6.3 (Informal statement). Under A12, A13, A14, A15, given β > 0 large

enough, Algorithm 7 produces an (ε1, 2ε1)-FOCP of (P) in at most O
(
ε−2

1

)
iterations. Al-

gorithm 7 also produces an (ε1, 2ε1, ε2 +Cε1)-SOCP of (P) in at most O
(
max{ε−2

1 , ε−3
2 }
)

iterations, where C ≥ 0 is a constant depending on the function h.

These definitions of criticality using the Riemannian gradient and Hessian are natu-

rally related to optimality conditions based on the Lagrangian function, which are com-

monly used in the optimization literature. Indeed, take ε0 ≥ 0, ε1 ≥ 0, ε2 ≥ 0. If x ∈ E
is an (ε0, ε1, ε2)-(SOCP) of (P), there exists λ ∈ Rm such that

‖h(x)‖ ≤ ε0, ‖∇xL(x, λ)‖ ≤ ε1 (6.9)

and 〈
∇2
xxL(x, λ)[v], v

〉
≥ −ε2 ‖v‖2 for all v ∈ E such that Dh(x)[v] = 0. (6.10)

Conditions (6.9) and (6.10) which are used in (Birgin et al., 2018; Xie and Wright, 2021)

are weaker than (ε-SOCP). Therefore, finding points which satisfy (ε-SOCP) is more

demanding than finding points which satisfy (6.9) and (6.10). Moreover, recent works

dealing with global complexity for constrained optimization have used a number of differ-

ent definitions of approximate second-order criticality, which are not equivalent to each

other. In Section 6.2 we compare and discuss these various conditions.

6.2 Related work

The study of complexity in optimization has been very active in recent years, both for

constrained and unconstrained problems. The field focuses on giving guarantees on the

133

worst-case number of iterations an algorithm requires to achieve a predetermined ter-

mination criterion. The first results dealt with the unconstrained case, where M = E .

Among others, Nesterov (2004) shows that for Lipschitz differentiable f , gradient descent

with an appropriate step size requires O(ε−2) iterations in the worst-case to find a point

which satisfies ‖∇f(x)‖ ≤ ε. This is sharp (Cartis et al., 2010), meaning that no algo-

rithm using an oracle of the same order can have a better worst-case performance. Note

that if Hessian information is available and f is twice Lipschitz continuously differen-

tiable, cubic regularization has a O(ε−3/2) complexity for approximate first-order critical

points (Cartis et al., 2010). Using derivatives of higher order can further improve the rate

of regularization methods (Birgin et al., 2017). Cartis et al. (2012) further show that a

point which satisfies both ‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −ε can be found in O(ε−3)

iterations using a cubic regularization method. This bound is also sharp.

The study of the constrained case adds some difficulties. We focus on problems with

equality constraints and leave aside inequality constraints. For complexity bounds of

constrained problems, the sharpness of the unconstrained bounds carries over to the

constrained case. That is, the best worst-case bounds achievable for the constrained case

are also O(ε−2) and O(ε−3) for first- and second-order points using first- and second-order

methods respectively.

Under A12, problem (P) is defined over a smooth manifold. For some known man-

ifolds, such as those described in (Absil et al., 2008), Riemannian optimization offers

an elegant and efficient way to solve constrained optimization problems. Boumal et al.

(2019) showed that Riemannian optimization algorithms have the same worst-case bounds

as their unconstrained counterparts. That is, under a Lipschitz smoothness assumption,

Riemannian gradient descent with an appropriate step size finds a point which satisfies

‖gradMf(x)‖ ≤ ε in O(ε−2) iterations. Similarly, a Riemannian trust-region algorithm

finds a point which satisfies ‖gradMf(x)‖ ≤ ε and λmin(HessMf(x))≥ −ε Id in O(ε−3)

iterations. Riemannian optimization methods are applicable to manifolds M provided

that one is able to compute retractions and generate a feasible sequence of iterates. This

is sometimes impossible or too expensive computationally. This prompts the use of in-

feasible methods to solve (P).

Several different notions of approximate criticality for (P) are considered in the liter-

ature. We review and compare them now, together with existing algorithmic guarantees

to find such points. Among those that cover approximate second-order critical points,

the rates are either not optimal (worse than O(ε−3)), or they rely on an unusual notion

of criticality.

For a non-empty, closed convex set F , Cartis et al. (2019) consider the problem

minx∈F f(x) such that h(x) = 0, which is a problem class more general than (P). They

134

propose a two-phase algorithm which finds approximate first-, second- and even third-

order critical points. The first phase of their algorithm attempts to find an approximately

feasible point. The second phase minimizes the cost function while tracking infeasibility

and staying close to the feasible set. This approach is unlikely to perform well in practice

but yields optimal complexity rates for finding approximately critical points, which for

first- and second-order are respectively O(ε−2) and O(ε−3) iterations. Their notion of

criticality is unusual. Considering the merit function

µ(x, t) :=
1

2
‖r(x, t)‖2 :=

1

2

∥∥∥∥(h(x)
f(x)− t

)∥∥∥∥2

,

an approximate second-order critical point x ∈ E is defined as satisfying

φ∆
µ,j(x, t) ≤ ε∆j ‖r(x, t)‖ for j = 1, 2 (6.11)

where

φ∆
µ,j := µ(x, t)− min

d∈E
‖d‖≤∆

Tµ,j(x, d),

is the largest feasible decrease of the jth order Taylor model Tµ,j(x, d) achievable at

distance at most ∆ from x.

Cifuentes and Moitra (2019) tackle the problem of minimizing semidefinite programs

using the Burer-Monteiro factorization. They adapt the two-phase algorithm from (Cartis

et al., 2019) so that the target points satisfy the following notion of criticality. For

γ > 0 and ε = (ε0, ε1, ε2), they define a point x ∈ E as (ε, γ)-approximately feasible

approximately 2-critical (AFAC) if there exists λ ∈ Rm such that:

‖h(x)‖ ≤ ε0, ‖∇xL(x, λ)‖ ≤ ε1

u>∇2
xxL(x, λ)u ≥ −ε2, ∀u of unit norm such that ‖Dh(x)∗[u]‖ ≤ γ. (AFAC)

The set of directions u ∈ E that satisfy ‖Dh(x)∗[u]‖ ≤ γ for some γ > 0 includes the

tangent space defined by Dh(x)∗[u] = 0. Therefore, the condition (AFAC) implies (6.9)

and (6.10) but the converse is not true. Under A12 and A15, along with uniform bound-

edness and Lipschitz continuity of f , h and their derivatives on C, Cifuentes and Moitra

(2019) show that an (AFAC) point can be found in O
(
max

{
ε−2

0 ε−2
1 , ε−3

0 ε−3
2

})
iterations.

The smoothness and initialization assumptions made are mostly equivalent to the ones

we make. Their complexity estimate is not optimal, but it is the first complexity es-

timate which guarantees an approximate solution to a semi-definite program with high

probability using the Burer-Monteiro formulation. They point out that in adapting the

two-phase algorithm from (Cartis et al., 2019) to guarantee (AFAC) points, a factor ε−1
0

is lost in the complexity.

135

A recent point of interest in the literature has been the study of complexity for

algorithms that belong to the family of augmented Lagrangian methods (ALM). These

methods have always been popular, with good practical results, but worst-case complexity

results were lacking. Augmented Lagrangian methods minimize Lβ(x, λ) by updating the

variables x ∈ E and λ ∈ Rm alternatively. At iteration k, the subproblem to update x

usually attempts to find approximate minimizers of Lβ(·, λk), while the multipliers are

updated using the first-order step λk+1 = λk − βh(xk). The penalty parameter β is also

typically increased throughout the iterations.

Xie and Wright (2021) analyse a proximal ALM, and suggest to solve the subproblems

using a Newton-conjugate gradient algorithm from (Royer et al., 2020). For this second-

order algorithm, they show a total iteration complexity to reach approximate first- and

second-order critical points of O(ε−5.5) and O(ε−7). When h is linear, their guarantees

match the best-known result of O(ε−3) total iterations for second-order points. These

results require the initial iterate to satisfy ‖h(x0)‖2 ≤ min(C0/ρ, 1) for some constant

C0 > 0 and ρ that increases as ε and σ decrease. This condition is difficult to verify in

practice, when there is no simple way to generate a feasible point. Admittedly, it can

also be difficult to satisfy A15 in general. The advantage of A15 is that generating an

initial iterate in C does not depend on ε but only on the function h. They require that

for some ρ0 ≤ 0, the function f(x) +
ρ0

2
‖h(x)‖2 has compact level sets, and also that

f be upper-bounded on the set {x ∈ E : ‖h(x)‖ ≤ 1}. Their target points satisfy the

conditions (6.9) and (6.10) for first- and second-order target points respectively. Note

that these conditions are weaker than (ε-SOCP). If x ∈ E is an (ε-SOCP), then it

satisfies (6.9) and (6.10) with multipliers λ(x) ∈ Rm. However, Equations (6.9) and (6.10)

do not imply (ε-SOCP). As a counter-example, in E = Rn take ε1 = ε2 = 1/2 with the

functions h(x) = ‖x‖2 − 1 and f(x) = 〈x,w〉 for some w ∈ E , ‖w‖ = 1. The maximizer

of this problem is the point w ∈ E : it satisfies (6.9) and (6.10) with multiplier λ = 1/4.

However, λmin(HessMf(w)) = −1 hence w is not an (ε-SOCP).

Grapiglia and Yuan (2021) provide a worst-case complexity analysis for an augmented

Lagrangian method that can be applied to both equality and inequality constraints.

For h(x0) = 0, the number of outer iterations to reach a first-order critical point is

O
(
ε−2/(α−1)

)
where α > 1 defines the rate of increase of the penalty parameter β, i.e.,

βk+1 = max{(k + 1)α, βk}. In this way, increasing α worsens the conditioning of the

subproblems and increases the inner iteration count, which is not included in the bound

above. The definition of first-order critical point simplifies to (6.9) for problems with

equality constraints only. Under the additional assumption that the penalty parameters

βk stay bounded as k →∞, the outer complexity is improved to O(log(ε−1)). It is debat-

136

able whether the assumption that the penalty parameters remain bounded is reasonable

in practice, as increasing the penalty parameters is critical to ensure convergence.

Birgin and Martnez (2019) analyse the outer iteration complexity of the popular op-

timization software Algencan introduced in (Andreani et al., 2008). This software was

designed with practical efficiency in mind. It handles both equalities and inequalities. It

is also safeguarded, meaning that upper and lower bounds are imposed on the multipliers.

That work also shows an outer iteration complexity of O(log(ε−1)) in the case of bounded

penalty parameters.

In (Conn et al., 1991), the authors present a classical augmented Lagragian algorithm,

where the usual first-order update for the multipliers λk+1 = λk − βh(x) can be replaced

by the least-squares update (6.3), namely, λk+1 = λ(xk+1). They show that if a limit

point x∗ of the algorithm is feasible, then it is first-order critical for (P) with multipliers

λ(x∗) (Equation (6.7)).

Sahin et al. (2019) study the problem minx∈Rn f1(x)+f2(x) such that F (x) = 0 where

f1 is nonconvex and smooth, f2 is proximal friendly and convex and F : Rn → Rm is a

nonlinear operator. The potential nonsmoothness of g extends the range of applications

compared to (P). For an augmented Lagrangian algorithm, they report bounds of O(ε−3)

and O(ε−5) outer iterations to find approximate first- and second-order critical points of

the augmented Lagrangian, where the subproblems are solved with a first- or second-order

solver respectively.

Optimization under orthogonality constraints appears in a number of applications

and is an active area of research. Riemannian optimization methods can be used on the

Stiefel manifold St(n, p) =
{
X ∈ Rn×p : X>X = In

}
and the orthogonal group O(p) ={

X ∈ Rp×p : X>X = Ip
}

. These algorithms require to perform an orthogonalization pro-

cedure, known as a retraction, at every step throughout the optimization process. When

p is small compared to n, fast retractions are available for the Stiefel manifold. However,

when p is large, computing these retractions is often the computational bottleneck (Gao

et al., 2019). This has prompted the search for retraction-free algorithms to deal with or-

thogonality constraints. Our use of Fletcher’s augmented Lagrangian is partially inspired

from (Gao et al., 2019). Those authors propose an algorithm specific to the Stiefel man-

ifold. The algorithm is a primal-dual scheme, which updates alternatively the variable

x and the multipliers λ. The primal update is obtained from approximately minimizing

Lβ(x, λ) over x, while λ is updated using a simplified version of formula (6.3), which we

call λ̂(·). Consider ĝ(x) = Lβ(x, λ̂(x)) the penalty where the least-squares multipliers

λ(·) are replaced by the approximation λ̂(·). In (Xiao et al., 2020), the authors further

study the penalty function ĝ(x) for the Stiefel manifold. Recognizing that this function

137

is unbounded below on Rn×p, they add an artificial box constraint around Stiefel to pre-

vent divergence and develop a second-order method to minimize ĝ(x) with asymptotic

convergence results. Ablin and Peyré (2021) also presents a retraction-free algorithm

on the orthogonal group. Their algorithm is an infeasible method which converges to

an orthogonal matrix through the minimization of a purposefully constructed potential

energy function. They report a speed up over classical retraction-based methods on some

large-scale problems.

In the recent works (Liu and Boumal, 2020; Jia et al., 2021), the authors consider a

framework where, conceptually, part of the constraints are easy to project onto, while

the other constraints are more difficult to handle, as can be the case for the constraints

of (P). Mixed approaches are proposed where the easy constraints are dealt with in a

Riemannian-like fashion, while the other constraints are penalized with an augmented

Lagrangian function.

Table 6.1 presents a list of works that have significant theoretical results for a problem

definition similar to (P). The table shows whether they consider second-order critical

points, how the target points are defined and the results in terms of global complexity

and local rate of convergence.

Around the year that augmented Lagrangian methods came about, the penalty func-

tion we use in this chapter, Fletcher’s augmented Lagrangian, was introduced in (Fletcher,

1970). In this original work, some fundamental properties of the function were established,

most notably, connecting critical points of f onM and critical points of g. Rapcsák (1997)

studies the modified Lagrangian function L(x, λ(x)) and considers the properties of its

critical points on a subset of M that is geodesically convex. Bertsekas (1982, section

4.3.2) also covers properties of g, as an exact penalty function that depends only on x

and does not use a variable for the Lagrange multipliers. We go over these properties in

the next section, and extend them substantially to situations with approximate critical

points of first- and second-order.

6.3 Properties of Fletcher’s augmented Lagrangian

We now cover properties of the function g, Fletcher’s augmented Lagrangian (Equa-

tion 6.6). In this section, we recall an original result from (Bertsekas, 1982) which es-

tablishes conditions under which the critical points and minimizers of g and (P) are

equivalent. The core of this section then establishes extensions of this result to the case

of approximate critical points. That is, we show that approximate first- and second-

order critical points of g are also approximately critical for (P) in the sense of (ε-FOCP)

and (ε-SOCP).

138

P
ap

er
lo

ca
l

ra
te

co
m

p
le

x
it

y
ta

rg
et

p
oi

n
ts

p
ro

b
le

m
cl

as
s

2n
d

or
d
er

O
u
r

w
or

k
7
∗

O
(ε
−

2
)

an
d
O

(ε
−

3
)

(ε
-S

O
C

P
)

m
in
f

(x
)

s.
t.
h

(x
)

=
0

3

(P
ol

ya
k
,

20
09

)
q
u
ad

ra
ti

c
7

7
m

in
f

(x
)

s.
t.
h

(x
)

=
0

3

(C
ar

ti
s

et
al

.,
20

19
)

7
O

(ε
−

2
)

an
d
O

(ε
−

3
)

(6
.1

1)
m

in
f

(x
)

s.
t.
h

(x
)

=
0,
x
∈
C

cv
x

3

(X
ie

an
d

W
ri

gh
t,

20
21

)
7

O
(ε
−

7
)

(ε
-S

O
C

P
)

m
in
f

(x
)

s.
t.
h

(x
)

=
0

3

(C
if

u
en

te
s

an
d

M
oi

tr
a,

20
19

)
7

O
(ε
−

6
)

(A
F
A

C
)

B
M

fo
r

S
D

P
3

(A
n
d
re

an
i

et
al

.,
20

07
)

7
7

(ε
-S

O
C

P
)

+
in

eq
.

m
in
f

(x
)

s.
t.
h

(x
)

=
0,
h

2
(x

)
≤

0
3

(X
ia

o
et

al
.,

20
20

)
q
u
ad

ra
ti

c
7

(6
.8

)
m

in
f

(X
)

s.
t.
X
∈

S
t(
n
,p

)
3

(G
ra

p
ig

li
a

an
d

x
ia

n
g

Y
u
an

,
20

19
)

7
O

(ε
−

2
/
(α
−

1
))

,
α
>

1†
(ε

-F
O

C
P

)
m

in
f

(x
)

s.
t.
h

(x
)

=
0,
h

2
(x

)
≤

0
7

(G
ao

et
al

.,
20

19
)

li
n
ea

r
O

(ε
−

2
)

(ε
-F

O
C

P
)

m
in
f

(X
)

s.
t.
X
∈

S
t(
n
,p

)
7

(B
ai

an
d

M
ei

,
20

18
)

li
n
ea

r
O

(ε
−

4
)

(ε
-F

O
C

P
)

m
in
f

(x
)

s.
t.
h

(x
)

=
0

7

(B
ai

et
al

.,
20

19
)

li
n
ea

r
7

(6
.7

)
m

in
f

(h
(x

))
s.

t.
A

(h
(x

))
=
b,
f

cv
x

7

(B
ir

gi
n

an
d

M
ar

tn
ez

,
20

19
)

7
O

(l
og

(1
/ε

))
‡

(ε
-F

O
C

P
)

+
in

eq
.

m
in
f

(x
)

s.
t.
h

(x
)

=
0,
h

2
(x

)
≤

0
7

T
ab

le
6.

1:
S
u
m

m
ar

y
of

re
la

te
d

w
or

k
s

on
co

m
p
le

x
it

y
fo

r
co

n
st

ra
in

ed
op

ti
m

iz
at

io
n
.

T
h
e

co
m

p
le

x
it

y
co

lu
m

n
gi

ve
s

th
e

to
ta

l
it

er
at

io
n

co
m

p
le

x
it

y
to

re
ac

h
fi
rs

t-
or

d
er

ta
rg

et
p

oi
n
ts

an
d

se
co

n
d
-o

rd
er

w
h
en

av
ai

la
b
le

.
T

h
e

la
st

co
lu

m
n

in
d
ic

at
es

w
h
et

h
er

se
co

n
d
-o

rd
er

cr
it

ic
al

p
oi

n
ts

ar
e

co
n
si

d
er

ed
.
∗)

T
h
e

al
go

ri
th

m
th

at
w

e
p
re

se
n
t

d
o
es

n
ot

co
m

e
w

it
h

a
gu

ar
an

te
e

of
lo

ca
l

q
u
ad

ra
ti

c
co

n
ve

rg
en

ce
.

H
ow

ev
er

,
it

is
p

os
si

b
le

to
m

o
d
if

y
it

to
en

su
re

lo
ca

l
q
u
ad

ra
ti

c
co

n
ve

rg
en

ce
,

se
e

R
em

ar
k

6.
1.
†)

T
h
e

b
ou

n
d
O

(ε
−

2
/
(α
−

1
))

in
(G

ra
p
ig

li
a

an
d

Y
u
an

,
20

21
)

is
an

ou
te

r
it

er
at

io
n

co
m

p
le

x
it

y.
‡)

T
h
e

b
ou

n
d
O

(l
og

(1
/ε

))
in

(B
ir

gi
n

an
d

M
ar

tn
ez

,
20

19
)

as
su

m
es

th
at

th
e

p
en

al
ty

p
ar

am
et

er
s
β
k

re
m

ai
n

b
ou

n
d
ed

as
k
→
∞

.

139

We define Cλ(x) as the operator norm of the differential of λ(·). Since C is assumed

compact and λ(·) is smooth, this quantity is bounded.

Definition 6.4. Under A12, for any x ∈ C, we define the quantity

Cλ(x) := ‖Dλ(x)‖op = σ1 (Dλ(x)) .

Additionally, under A13, we define the constant

Cλ := max
x∈C
‖Dλ(x)‖op <∞.

Definition 6.5. Under A12, for x ∈ C, we define the following quantities

β1(x) =
σ1(Dh(x))Cλ(x)

2σ2
min(Dh(x))

β2(x) =
Cλ(x)

σmin(Dh(x))

β3(x) =
1

σmin(Dh(x))
.

Additionally, under A13, we define the constants β̄i = maxx∈C βi(x) for i = 1, 2, 3.

The following result connects first-order critical points and minimizers of g and f on

M. The original proof is adapted to our notations in Appendix A.2.

Proposition 6.4 ((Bertsekas, 1982), Prop. 4.22). Let g(x) = Lβ(x, λ(x)) be Fletcher’s

augmented Lagrangian and assume M⊂ D, where D = {x ∈ E : rank(Dh(x)) = m} and

M = {x ∈ E : h(x) = 0}.

1. For any β, if x is a first-order critical point of (P), then x is a first-order critical

point of g.

2. Let x ∈ D and β > β1(x). If x is a first-order critical point of g, then x is a

first-order critical point of (P).

3. Let x be a first-order critical point of (P) and let K be a compact subset of D.

Assume x is the unique global minimum of f over M ∩ K and that x is in the

interior of K. Then, there exists β large enough such that x is the unique global

minimum of g over K.

4. Let x ∈ D and β > β1(x). If x is a local minimum of g, then x is a local minimum

of (P).

140

The previous result is encouraging. It shows that minimizing the function g inside

D provides a way to find minimizers of (P). However, in practice, algorithms can only

find approximate first- and second-order critical points in finite time. With the above

proposition, one is left wondering whether such approximate points for g correspond to

similarly approximate critical points for (P). The remainder of this section provides such

guarantees.

The gradient of the augmented Lagrangian Lβ with respect to x is given by

∇xLβ(x, λ) = ∇f(x)−Dh(x)∗[λ] + 2βDh(x)∗[h(x)]

= ∇f(x)−Dh(x)∗[λ− 2βh(x)].

Owing to (6.4), we make the following central observation: the gradient of Lβ with respect

to its first argument, when evaluated at (x, λ(x)), splits into orthogonal components; one

component in the tangent space TxMx, and one component in the normal space to Mx

at x,

∇xLβ(x, λ(x)) = gradMx
f(x) + 2βDh(x)∗[h(x)]. (6.12)

Owing to orthogonality, ∇xLβ(x, λ(x)) is small if and only if the two terms on the right

are small. It takes an easy computation to check that for all x ∈ D we have

Dg(x)[v] = Df(x)[v]− 〈Dλ(x)[v], h(x)〉 − 〈λ(x),Dh(x)[v]〉+ 2β 〈h(x),Dh(x)[v]〉

= 〈∇f(x), v〉 − 〈Dh(x)∗[λ(x)− 2βh(x)], v〉 − 〈Dλ(x)∗[h(x)], v〉

= 〈∇xLβ(x, λ(x)), v〉 − 〈Dλ(x)∗[h(x)], v〉 .

Thus, for all x ∈ D,

∇g(x) = ∇xLβ(x, λ(x))−Dλ(x)∗[h(x)]

= gradMx
f(x) + 2βDh(x)∗[h(x)]−Dλ(x)∗[h(x)] . (6.13)

Therefore, for x ∈ M, ∇g(x) = gradMf(x). Consequently, for any value of β, if x

satisfies the constraints h(x) = 0, that is, if x is on the manifoldM, then x is first-order

critical for f on M (Equation(6.7)) if and only if ∇g(x) = 0.

6.3.1 Approximate first-order criticality

In this section, we show that if ∇g(x) is small at some x ∈ C, the point x is approximately

first-order critical for (P) in the sense of (ε-FOCP). We first recall a lemma about singular

values.

141

Lemma 6.5 ((Horn and Johnson, 1991), Theorem 3.3.16). Let A,B ∈ Rm×n and let

q = min(m,n),

σq(A−B) ≥ σq(A)− σ1(B)

Proposition 6.6. Under A12, take ε1 ≥ 0 and x ∈ C with β > max {β2(x), β3(x)}. If

‖∇g(x)‖ ≤ ε1, then

‖h(x)‖ ≤ ε1

βσmin(Dh(x))
≤ ε1 and

∥∥gradMx
f(x)

∥∥ ≤ (1 +
Cλ(x)

βσmin(Dh(x))

)
ε1 ≤ 2ε1.

Proof. We remember from (6.13) that

∇g(x) = gradMx
f(x) + 2βDh(x)∗[h(x)]−Dλ(x)∗[h(x)]

= gradMx
f(x)− Projx (Dλ(x)∗[h(x)]) + 2βDh(x)∗[h(x)]− Proj⊥x (Dλ(x)∗[h(x)])

where Proj⊥x = Id−Projx, is the orthogonal projection on NxMx = (TxMx)
⊥, the normal

space to Mx at x. We have decomposed the right-hand side in two tangent and two

normal terms with respect to the manifoldMx. By orthogonality, ‖∇g(x)‖ ≤ ε1 implies

that both the tangent and normal components have norm smaller than ε1. For the normal

terms this yields,∥∥2βDh(x)∗[h(x)]− Proj⊥x (Dλ(x)∗[h(x)])
∥∥ =

∥∥(2βDh(x)∗ − Proj⊥x (Dλ(x)∗)
)

[h(x)]
∥∥ ≤ ε1.
(6.14)

Note that Dh(x)∗ is nonsingular since x ∈ C. We show that β is large enough so that the

operator
(
2βDh(x)∗ − Proj⊥x (Dλ(x)∗)

)
is nonsingular. We use Lemma 6.5 to write

σmin

(
2βDh(x)∗ − Proj⊥x (Dλ(x)∗)

)
≥ σmin (2βDh(x)∗)− σmax

(
Proj⊥x (Dλ(x)∗)

)
.

The assumption on β then provides

σmin (2βDh(x)∗)− σmax

(
Proj⊥x (Dλ(x)∗)

)
≥ 2βσmin (Dh(x))− Cλ(x)

> βσmin (Dh(x)) > 1.

We inject this into (6.14) to find:

‖h(x)‖ ≤ ε1

σmin

(
2βDh(x)∗ − Proj⊥x (Dλ(x)∗)

)
≤ ε1

βσmin(Dh(x))
≤ ε1.

142

Now we use the tangent terms:

ε1 ≥
∥∥gradMx

f(x)− Projx (Dλ(x)∗[h(x)])
∥∥

≥
∥∥gradMx

f(x)
∥∥− ‖Projx (Dλ(x)∗[h(x)])‖

≥
∥∥gradMx

f(x)
∥∥− ‖Dλ(x)∗[h(x)]‖

≥
∥∥gradMx

f(x)
∥∥− Cλ(x) ‖h(x)‖

≥
∥∥gradMx

f(x)
∥∥− Cλ(x)

ε1

βσmin(Dh(x))
.

This allows to conclude
∥∥gradMx

f(x)
∥∥ ≤ ε1 +

Cλ(x)

βσmin(Dh(x))
ε1 ≤ 2ε1.

Corollary 6.7. Under A12 and A13, take ε1 ≥ 0 and x ∈ C. If β satisfies the global

bounds

β > β̄2 and β > β̄3, (6.15)

and additionally ‖∇g(x)‖ ≤ ε1, then

‖h(x)‖ ≤ ε1

βσ
≤ ε1 and

∥∥gradMx
f(x)

∥∥ ≤ (1 +
Cλ
βσ

)
ε1 ≤ 2ε1,

where σ ≤ minx∈C σmin (Dh(x)) and β̄2, β̄3 are introduced in Definition 6.5.

6.3.2 Approximate second-order criticality

We now turn our attention to approximate second-order critical points of Fletcher’s

augmented Lagrangian. Similarly to first-order criticality, we investigate connections

with (ε-SOCP) points for (P). As this section shows, some second-order critical points

of (P) are not second-order critical points of g. However, strict second-order critical

points of g and (P) match, provided that β is large enough. The Hessian of g is obtained

by taking a directional derivative of (6.13). For any ẋ ∈ E ,

∇2g(x)[ẋ] = ∇2f(x)[ẋ]

− (D(x 7→ Dλ(x)∗)(x)[ẋ]) [h(x)]

−Dλ(x)∗[Dh(x)[ẋ]] (6.16)

− (D(x 7→ Dh(x)∗)(x)[ẋ]) [λ(x)− 2βh(x)]

−Dh(x)∗[Dλ(x)[ẋ]− 2βDh(x)[ẋ]] .

We begin with a statement about feasible points which connects the Hessian of g and the

Riemannian Hessian of f on M.

143

Proposition 6.8. For all x ∈M we have

HessMf(x) = Projx ◦ ∇2g(x) ◦ Projx.

Therefore, if ∇2g(x) � −ε2 Id for some ε2 ≥ 0, then HessMf(x) � −ε2 Id. If ∇2g(x) � 0,

then HessMf(x) � 0.

Proof. We show that if h(x) = 0, Projx ◦ ∇2g(x) ◦ Projx = HessMf(x). Take ẋ ∈ E and

plug h(x) = 0 into Equation (6.16). This gives

∇2g(x)[ẋ] = ∇2f(x)[ẋ]−
m∑
i=1

λi(x)∇2hi(x)[ẋ]

+ 2βDh(x)∗[Dh(x)[ẋ]]

−Dλ(x)∗[Dh(x)[ẋ]]−Dh(x)∗[Dλ(x)[ẋ]] .

If, in addition, ẋ ∈ ker Dh(x), then

〈
ẋ,∇2g(x)[ẋ]

〉
=
〈
ẋ,∇2f(x)[ẋ]

〉
−

m∑
i=1

λi(x)
〈
ẋ,∇2hi(x)[ẋ]

〉
.

Since ker Dh(x) = TxM, we conclude from Equation (6.5) that

Projx ◦ ∇2g(x) ◦ Projx = Projx ◦

(
∇2f(x)−

m∑
i=1

λi(x)∇2hi(x)

)
◦ Projx = HessMf(x).

In particular, for ε2 = 0, the above result tells us that, irrespective of β ≥ 0, if x ∈M
satisfies ∇g(x) = 0 and ∇2g(x) � 0, the point x is second-order critical for f on M
(Equation (6.8)). Unfortunately, the converse is not true (Fletcher, 1970). For x ∈ M
such that gradMf(x) = 0 and HessMf(x) � 0, it is not possible in general to guarantee

the existence of a finite β such that ∇2g(x) � 0. Fletcher (1970) showed that the converse

holds for positive definite Hessians.

Proposition 6.9 ((Fletcher, 1970)). If x ∈M is a local minimizer of (P) with HessMf(x) �
0, there exists β large enough such that ∇2g(x) � 0.

Remark 6.1 (Local quadratic convergence). Assume that A12, A13 and A15 hold. For

β large enough, it is possible to use Fletcher’s augmented Lagrangian to converge at a

local quadratic rate towards isolated minimizers of (P). Let x∗ ∈ M, a strict second-

order critical point for (P) satisfying gradf(x∗) = 0 and Hessf(x∗) � 0. Provided β is

large enough, x∗ satisfies ∇g(x∗) = 0 and ∇2g(x∗) � 0 (Propositions 6.4 and 6.9). Take

x0 ∈ C close enough to x∗, the classical Newton method applied to the function g produces

a sequence which converges towards x∗ at a quadratic rate.

144

Proposition 6.8 can be generalized to any point in C using an upper bound on the

gradient norm of g.

Proposition 6.10. Under A12, take x ∈ C with β > max {β2(x), β3(x)}. Assume

‖∇g(x)‖ ≤ ε1 so that Proposition 6.6 applies at x. If ∇2g(x) � −ε2 Id, then

HessMxf(x) � −(ε2 + C(x)ε1) IdTxMx ,

where C(x) = 2 ‖(D(x 7→ Dh(x)∗)(x))‖op /σmin(Dh(x)) + ‖(D(x 7→ Dλ(x)∗)(x))‖op .

Proof. Since x ∈ C, for any ẋ ∈ TxMx, Equation (6.5) gives the Riemannian Hessian of

f at x and yields

〈ẋ,HessMxf(x)[ẋ]〉 =

〈
ẋ,∇2f(x)[ẋ]−

m∑
i=1

λi(x)∇2hi(x)[ẋ]

〉
.

By assumption, for any ẋ ∈ E ,

〈ẋ,∇2g(x)[ẋ]〉 ≥ −ε2 ‖ẋ‖2 .

In Equation (6.16), take ẋ ∈ TxMx = ker(Dh(x)) and remember that the span of Dh(x)∗

is orthogonal to TxMx. This gives(
Projx ◦ ∇2g(x) ◦ Projx

)
[ẋ] = Projx ◦

(
∇2f(x)[ẋ]

− (D(x 7→ Dh(x)∗)(x)[ẋ]) [λ(x)− 2βh(x)]

− (D(x 7→ Dλ(x)∗)(x)[ẋ]) [h(x)]
)
.

For clarity, we write Fh(x) = D(x 7→ Dh(x)∗)(x) and Fλ(x) = D(x 7→ Dλ(x)∗)(x). We

compute the derivative

− (Fh(x)[ẋ]) [λ(x)− 2βh(x)] = −
m∑
i=1

(λi(x)− 2βhi(x))∇2hi(x)[ẋ],

which gives

〈
ẋ,Projx ◦ ∇2g(x) ◦ Projx[ẋ]

〉
=

〈
ẋ,∇2f(x)[ẋ]−

m∑
i=1

λi(x)∇2hi(x)[ẋ]

〉
+ 〈ẋ, 2β (Fh(x)[ẋ]) [h(x)]〉

− 〈ẋ, (Fλ(x)[ẋ]) [h(x)]〉

≥ −ε2 ‖ẋ‖2 .

145

The formula for HessMxf(x) has appeared on the right-hand side. Using ‖h(x)‖ ≤
ε1

βσmin(Dh(x))
≤ ε1 from Proposition 6.6, we find

〈
ẋ,∇2f(x)[ẋ]−

m∑
i=1

λi(x)∇2hi(x)[ẋ]

〉
≥ −2β 〈ẋ, (Fh(x)[ẋ]) [h(x)]〉

+ 〈ẋ, (Fλ(x)[ẋ]) [h(x)]〉 − ε2 ‖ẋ‖2

≥ −2β ‖Fh(x)‖op ‖ẋ‖
2 ‖h(x)‖

− ‖Fλ(x)‖op ‖ẋ‖
2 ‖h(x)‖ − ε2 ‖ẋ‖2

≥ −2β ‖Fh(x)‖op ‖ẋ‖
2 ε1

βσmin(Dh(x))

− ‖Fλ(x)‖op ‖ẋ‖
2 ε1 − ε2 ‖ẋ‖2

≥ −ε2 ‖ẋ‖2 −
(

2 ‖Fh(x)‖op /σmin(Dh(x))

+ ‖Fλ(x)‖op

)
ε1 ‖ẋ‖2 .

Corollary 6.11. Under A12 and A13, take x ∈ C with β > max
{
β̄2, β̄3

}
. Assume

‖∇g(x)‖ ≤ ε1 so that Corollary 6.7 applies. If ∇2g(x) � −ε2Id, then

HessMxf(x) � −(ε2 + Cε1) IdTxMx ,

where C = maxx∈C 2 ‖(D(x 7→ Dh(x)∗)(x))‖op /σ + ‖(D(x 7→ Dλ(x)∗)(x))‖op.

6.3.3 Property of the region C

The algorithms we design and analyze in later sections produce iterates which are ini-

tialized in a given connected component of C = {x ∈ E : ‖h(x)‖ = R}, with R as

in A12. Since C may in general have more than one such component, and since we

hope in particular that our iterates converge to a feasible point, that is, to a point in

M = {x ∈ E : h(x) = 0}, it is natural to wonder whether each connected component of

C intersects with M. That is indeed the case, as we now show.

Proposition 6.12. Under A12, every connected component of C contains a point z̄ ∈ E
such that h(z̄) = 0.

Proof. Define ϕ(x) =
1

2
‖h(x)‖2 and take any x0 ∈ C = {x ∈ E : ϕ(x) ≤ R2/2}. Consider

the following differential system:
d

dt
x(t) = −∇ϕ(x(t))

x(0) = x0.
(6.17)

146

The fundamental theorem of flows (Lee, 2018, Theorem A.42) guarantees the existence

of a unique maximal integral curve starting at x0 for (6.17). Let z(·) : I → E denote this

maximal integral curve and T > 0 be the supremum of the interval I on which z(·) is

defined. We rely on the Escape Lemma (Lee, 2018, Lemma A.43) to show that z(t) is

defined for all times t ≥ 0. For t < T , we write ` = ϕ ◦ z and find

`′(t) = Dϕ(z(t))

[
d

dt
z(t)

]
=

〈
∇ϕ(z(t)),

d

dt
z(t)

〉
= −‖∇ϕ(z(t))‖2

= −‖Dh(z(t))∗[h(z(t))]‖2 ≤ 0.

This implies that z(t) ∈ C for all 0 ≤ t < T . We show that the trajectory z(t) has finite

length. To that end, we note that
1

2
‖∇ϕ(x)‖2 =

1

2
‖Dh(x)[h(x)]‖2 ≥ σ2 1

2
‖h(x)‖2 =

σ2ϕ(x) for all x ∈ C. The length of the trajectory from time t = 0 to t = T is given by∫ T

0

∥∥∥∥ d

dt
z(t)

∥∥∥∥ dt =

∫ T

0

‖−∇ϕ(z(t))‖ dt

=

∫ T

0

‖∇ϕ(z(t))‖2

‖∇ϕ(z(t))‖
dt

=

∫ T

0

〈
−∇ϕ(z(t)), d

dt
z(t)

〉
‖∇ϕ(z(t))‖

dt

=

∫ T

0

−(ϕ ◦ z)′(t)

‖∇ϕ(z(t))‖
dt

≤
∫ T

0

−(ϕ ◦ z)′(t)

σ
√

2(ϕ ◦ z)(t)
dt

=
−
√

2

σ

[√
ϕ(z(T))−

√
ϕ(z(0))

]
≤
√

2ϕ(z(0))

σ
.

The length is bounded independently of T and therefore the flow has finite length. The

Escape Lemma states that for a maximum integral curve z(·) : I → E , if I has a finite

upper bound, then the curve z(·) must be unbounded. The converse ensures that, since

z(·) is contained in a compact set, the interval I does not have a finite upper bound

and therefore, I = R+. Since the trajectory z(t) is bounded for t ≥ 0, it must have an

accumulation point z̄. From A12, we have σmin(Dh(z(t)) ≥ σ > 0 for all t ≥ 0. This

gives the bound `′(t) ≤ −σ2 ‖h(z(t))‖2 = −2σ2`(t). Gronwall’s inequality then yields

`(t) ≤ ϕ(x0)e−2σ2t.

Therefore `(t)→ 0 as t→∞, which implies h(z(t))→ 0 as t→∞. We conclude that the

accumulation point satisfies h(z̄) = 0. Since C is closed, the point z̄ is in C. Therefore, z̄

is both in M and in the connected component of C that contains z(0) = x0.

147

6.4 Gradient-Eigenstep algorithm

In this section we present an optimization algorithm to minimize g. It is designed to

remain in C, the region of interest where λ(x) is well defined. The algorithm alternates

between gradient steps (first-order) and eigensteps (second-order) to reach approximate

second-order critical points of g. If the gradient of g is large, a gradient step on g is used.

If the gradient of g is below a tolerance, the algorithm follows a direction of negative

curvature of the Hessian of g. Gradient and eigensteps must fulfil two purposes: they

must guarantee a sufficient decrease of the penalty g and also ensure that the next iterate

remains inside C. This is detailed in Algorithm 7. Given values ε1 > 0, ε2 > 0, the

algorithm returns a point which satisfies ‖∇g(x)‖ ≤ ε1 and λmin (∇2g(x)) ≥ −ε2. This

ensures that x is an (ε1, ε2 + C(x)ε1)-SOCP of (P) according to Proposition 6.10.

Whenever ‖∇g(x)‖ > ε1, a gradient step is used and we require that the step-length

α satisfies a classical Armijo sufficient decrease condition:

g(x)− g(x− α∇g(x)) ≥ c1α ‖∇g(x)‖2 , (6.18)

for some c1 < 1. The backtracking procedure for gradient steps is presented in Algo-

rithm 8. This is a classical backtracking modified to additionally ensure that the iterates

stay in C, which is always possible for small enough steps, as we show in Proposition 6.13.

Given x ∈ C with ‖∇g(x)‖ ≤ ε1 and λmin (∇2g(x)) < −ε2, a second-order step must

be applied. We compute a unit-norm vector d ∈ E such that 〈d,∇2g(x)[d]〉 < −ε2 ‖d‖2.

To ensure sufficient decrease, we wish to find α > 0 such that

g(x)− g(x+ αd) ≥ −c2α
2〈d,∇2g(x)[d]〉, (6.19)

for some 0 < c2 < 1/2. In Algorithm 9, we detail the backtracking used for second-order

steps. It is designed to ensure (6.19) and additionally that the steps are small enough to

remain in C, which is possible as we show in Proposition 6.15.

We define some bounds on the derivatives of g, which are finite due to the smoothness

of g in C and compactness of C (A13).

Definition 6.6. Under A12 and A13, define the constants

Lg = max
x∈C

∥∥∇2g(x)
∥∥

op
and Mg = max

x∈C

∥∥∇3g(x)
∥∥

op
. (6.20)

6.4.1 Algorithm

We define Algorithm 7, a procedure which combines first- and second-order steps to

minimize g up to approximate second-order criticality if ε2 < ∞. Setting ε2 = ∞ gives

a first-order version of the algorithm. To run Algorithm 7, we assume that the value of

the penalty parameter β does not change and is large enough in the following sense.

148

A16. Under A12 and A13, β is chosen such that β > β with

β := max
{
β1, β2, β3

}
, (6.21)

where βi for i = 1, 2, 3 are defined in Definition 6.5.

In Section 6.5, we show how this assumption can be removed, using an adaptive

scheme for β.

Algorithm 7 Gradient-Eigenstep

1: Given: Function f and h, x0 ∈ C, β > 0, 0 ≤ ε1 ≤ R/2 and ε2 ≥ 0.
2: Set k = 0
3: while no optional stopping criterion triggers do
4: if ‖∇g(xk)‖ > ε1 then
5: xk+1 = xk − t∇g(xk) with t given by Algorithm 8
6: else if ε2 <∞ then
7: if λmin(∇2g(xk)) < −ε2 then
8: Find d ∈ E such that 〈d,∇2g(xk)[d]〉 < −ε2 ‖d‖2, 〈d,∇g(xk)〉 ≤ 0 and
‖d‖ = 1.

9: xk+1 = xk + td where t is given by Algorithm 9.
10: else
11: return xk . ‖∇g(xk)‖ ≤ ε1 and ∇2g(xk) � −ε2 Id
12: end if
13: else
14: return xk . ‖∇g(xk)‖ ≤ ε1

15: end if
16: k = k + 1
17: end while

Algorithm 8 Gradient step backtracking, modified to stay in C
1: Given: x ∈ C, α01 > 0, 0 < c1 < 1, 0 < τ1 < 1.
2: Set α = α01

3: while true do
4: if g(x)− g(x− α∇g(x)) ≥ c1α ‖∇g(x)‖2 and x− α∇g(x) ∈ C then
5: return α
6: else
7: α = τ1α
8: end if
9: end while

149

Algorithm 9 Eigenstep backtracking, modified to stay in C
1: Given: x ∈ C, unit-norm d ∈ E , α02 > 0, 0 < c2 < 1/2, 0 < τ2 < 1.
2: Set α = α02

3: while true do
4: if g(x)− g(x+ αd) ≥ −c2α

2〈d,∇2g(x)[d]〉 and x+ αd ∈ C then
5: return α
6: else
7: α = τ2α
8: end if
9: end while

6.4.2 First-order steps

We show that small enough gradient steps remain in C.

Proposition 6.13. Assume A12 holds with constant R and A14 holds with constant Ch.

Then, for all x ∈ C, if β > β1(x), it holds that x− t∇g(x) is in C for all t in the interval

[0, t1(x)] where t1(x) is defined by

t1(x) := min

(√
R

2Ch

1

‖∇g(x)‖
,
(2βσmin(Dh(x))2 − σ1(Dh(x))Cλ(x))R

2Ch ‖∇g(x)‖2 ,
1

2β ‖Dh(x)‖2
op

)
,

(6.22)

where Cλ(x) = ‖Dλ(x)‖op (Definition 6.4).

Proof. Given x ∈ C, consider the gradient step xt = x− t∇g(x) for some t ≥ 0. We wish

to find tmax > 0 such that xt ∈ C for all t ∈ [0, tmax]. Using A14, we have

h(xt) = h(x− t∇g(x))

= h(x)− tDh(x)[∇g(x)] + E (x,−t∇g(x))

where ‖E(x,−t∇g(x))‖ ≤ Ch ‖t∇g(x)‖2. Using Equation (6.13) gives

h(xt) = h(x)− tDh(x)
[
gradMx

f(x) + 2βDh(x)∗[h(x)]−Dλ(x)∗[h(x)]
]

+ E(x,−t∇g(x)).

Since gradMx
f(x) belongs to ker (Dh(x)) by construction, one term cancels:

h(xt) = h(x)− 2βtDh(x)[Dh(x)∗[h(x)]] + tDh(x)[Dλ(x)∗[h(x)]] + E(x,−t∇g(x))

= (Im − 2βtDh(x) ◦Dh(x)∗)[h(x)] + (tDh(x) ◦Dλ(x)∗)[h(x)] + E(x,−t∇g(x)).

Let σ1 ≥ · · · > σm > 0 denote the singular values of Dh(x). The eigenvalues of the

symmetric operator (Im − 2βtDh(x) ◦Dh(x)∗) are 1 − 2βtσ2
1 ≤ · · · ≤ 1 − 2βtσ2

m. All

these eigenvalues are smaller than one and are nonnegative provided 0 ≤ 1− 2βtσ2
1 and

t ≥ 0, or equivalently:

0 ≤ t ≤ 1

2β ‖Dh(x)‖2
op

. (6.23)

150

Under that assumption, we further find:

‖h(xt)‖ ≤ (1− 2βtσ2
m) ‖h(x)‖+ tσ1 ‖Dλ(x)∗‖op ‖h(x)‖+ Cht

2 ‖∇g(x)‖2 .

We want to show ‖h(xt)‖ ≤ R, which is indeed the case if

(1− 2βtσ2
m) ‖h(x)‖+ tσ1Cλ(x) ‖h(x)‖+ Ch ‖∇g(x)‖2 t2 ≤ R.

Thus, we seek conditions on t to ensure that the following quadratic inequality in t holds:

Ch ‖∇g(x)‖2 t2 +
(
σ1Cλ(x)− 2βσ2

m

)
‖h(x)‖ t+ ‖h(x)‖ −R ≤ 0. (6.24)

We branch into two cases. Firstly, consider ‖h(x)‖ ∈ [R/2, R]. In this case, (6.24) holds

a fortiori if we remove the independent term ‖h(x)‖ − R since the latter is nonpositive.

By assumption, β > β1(x) = σ1Cλ(x)/2σ2
m, so the linear term is nonpositive. Therefore,

we can upper bound the quadratic by setting ‖h(x)‖ = R/2. This shows that

Ch ‖∇g(x)‖2 t2 +
(
σ1Cλ(x)− 2βσ2

m

)
‖h(x)‖ t+ ‖h(x)‖ −R

≤ Ch ‖∇g(x)‖2 t2 +
(
σ1Cλ(x)− 2βσ2

m

) R
2
t.

The above is a convex quadratic with two real roots. It is nonpositive — and (6.24) is

satisfied — if:

0 ≤ t ≤ (2βσ2
m − σ1Cλ(x))R

2Ch ‖∇g(x)‖2 . (6.25)

For ‖h(x)‖ ∈ [0, R/2], the linear term in (6.24) is still nonpositive. Additionally, the

constant term of the quadratic is upper bounded by −R/2. This establishes

Ch ‖∇g(x)‖2 t2 +
(
σ1Cλ(x) ‖h(x)‖ − 2βσ2

m ‖h(x)‖
)
t+ ‖h(x)‖ −R ≤ Ch ‖∇g(x)‖2 t2 − R

2
.

We infer that, for ‖h(x)‖ ∈ [0, R/2], condition (6.24) is satisfied for

0 ≤ t ≤
√

R

2Ch

1

‖∇g(x)‖
. (6.26)

The main claim now follows by collecting the conditions in equations (6.23), (6.25)

and (6.26).

We now show that the backtracking in Algorithm 8 terminates in a finite number of

steps and guarantees a sufficient decrease.

151

Lemma 6.14 (Gradient step decrease). Take x ∈ C and β > β1(x). The backtracking

procedure in Algorithm 8 terminates with a step-size t ≥ τ1 min(α1, t1(x)) > 0 where

α1 = min

(
α01,

2(1− c1)

Lg

)
and t1(x) is defined in Equation (6.22). This guarantees the following decrease:

g(x)− g(x− t∇g(x)) ≥ c1τ1 min(α1, t1(x)) ‖∇g(x)‖2 . (6.27)

Proof. From Proposition 6.13, we know that x− α∇g(x) is in C for every 0 ≤ α ≤ t1(x).

We proceed to show that the Armijo decrease condition (6.18) is satisfied for any 0 ≤
α ≤ min(t1(x), α1). For every 0 ≤ α ≤ t1(x), the norm of the Hessian of g is bounded by

the constant Lg (Equation (6.20)), which implies that ∇g is Lg-Lipschitz continuous on

the segment that connects x and x− t1(x)∇g(x). Thus, for all 0 ≤ α ≤ t1(x), we have

g(x− α∇g(x)) ≤ g(x) + 〈−α∇g(x),∇g(x)〉+
Lg
2
‖α∇g(x)‖2

= g(x) +

(
αLg

2
− 1

)
α ‖∇g(x)‖2 .

This is equivalent to g(x) − g(x − α∇g(x)) ≥ (1− αLg/2)α ‖∇g(x)‖2. For 0 ≤ α ≤
2(1 − c1)/Lg, we have (1 − αLg/2) ≥ c1. Hence, for 0 ≤ α ≤ min(t1(x), α1), condi-

tion (6.18), g(x)−g(x−α∇g(x)) ≥ c1α ‖∇g(x)‖2 is satisfied. Given β > β1(x), one read-

ily checks that t1(x) is positive. Since α1 is also positive, there exists a nonempty interval,

]0,min(α1, t1(x))], where the step size satisfies the Armijo condition and defines a next

iterate inside C. Therefore, Algorithm 8 returns a step t satisfying t ≥ τ1 min(α1, t1(x)).

In addition, the Armijo condition gives

g(x)− g(x− t∇g(x)) ≥ c1t ‖∇g(x)‖2

≥ c1τ1 min(α1, t1(x)) ‖∇g(x)‖2 .

6.4.3 Second-order steps

We begin with a result which guarantees small enough steps stay in C when ∇g(x) is

small.

Proposition 6.15. Suppose A12 and A14 hold. Take x ∈ C with β > max {β1(x), β2(x), β3(x)}.
Assume that ‖∇g(x)‖ ≤ ε1 for some ε1 ≤ R/2 so that Proposition 6.6 applies. For any

d ∈ E with ‖d‖ = 1, the point x + td is in C for all t in the interval [0, t2(x)] with t2(x)

defined by

t2(x) :=
(
−σ1(Dh(x)) +

√
σ1(Dh(x))2 + 2ChR

)
/2Ch. (6.28)

152

Proof. Since ‖∇g(x)‖ ≤ ε1, Proposition 6.6 ensures ‖h(x)‖ ≤ ε1. For t > 0, A14 yields

h(x+ td) = h(x) + tDh(x)[d] + E(x, td)

‖h(x+ td)‖ ≤ ‖h(x)‖+ tσ1 ‖d‖+ Cht
2 ‖d‖2

≤ ε1 + tσ1 + Cht
2,

where σ1 is the largest singular value of Dh(x). We want to find the values of t ≥ 0 for

which ε1 + tσ1 + Cht
2 ≤ R. The convex quadratic t 7→ Cht

2 + σ1t + ε1 − R has roots(
−σ1 ±

√
σ2

1 − 4(ε1 −R)Ch

)
/2Ch, which for ε1 < R are real and of opposite signs.

Hence, the quadratic is nonpositive for all t such that

0 ≤ t ≤
(
−σ1 +

√
σ2

1 + 4|R− ε1|Ch
)
/2Ch.

By assumption, ε1 ≤ R/2 and therefore x+ td belongs to C for all t such that

0 ≤ t ≤
(
−σ1 +

√
σ2

1 + 4ChR/2

)
/2Ch.

We now show that the backtracking of Algorithm 9 terminates in a finite number of

steps and guarantees a sufficient decrease.

Lemma 6.16 (Eigenstep decrease). Take x ∈ C and β > max {β1(x), β2(x), β3(x)} with

‖∇g(x)‖ ≤ ε1 for some ε1 ≤ R/2. Assume there exists a direction d ∈ E such that

‖d‖ = 1, 〈d,∇2g(x)[d]〉 < −ε2 for some ε2 > 0 and 〈d,∇g(x)〉 ≤ 0. The backtracking

procedure in Algorithm 9 terminates with a step size t ≥ τ2 min(α2(x), t2(x)) > 0 where

α2(x) = min

(
α02,

3|2c2 − 1||〈d,∇2g(x)[d]〉|
Mg

)
and t2(x) is defined in Equation (6.28). This ensures the following decrease:

g(x)− g(x+ td) ≥ −c2τ
2
2 min(α2(x), t2(x))2〈d,∇2g(x)[d]〉. (6.29)

Proof. From Proposition 6.15, the point x + αd is in C for all 0 ≤ α ≤ t2(x). We show

that for all 0 ≤ α ≤ min(α2(x), t2(x)), the decrease condition (6.19) is satisfied. For

every 0 ≤ α ≤ t2(x), the norm of the third derivative of g is bounded by the constant

Mg (Equation (6.20)), which implies that ∇2g is Mg-Lipschitz continuous on the segment

that connects x and x+ t2(x)d. Thus, for all 0 ≤ α ≤ t2(x), we have

g(x+ αd) ≤ g(x) + α〈d,∇g(x)〉+
α2

2
〈d,∇2g(x)[d]〉+

Mg

6
α3 ‖d‖3

≤ g(x) +
α2

2
〈d,∇2g(x)[d]〉+

Mg

6
α3

≤ g(x) +
α2

2

(
〈d,∇2g(x)[d]〉+

Mgα

3

)
.

153

The sufficient decrease condition (6.19), g(x)− g(x + αd) ≥ −c2α
2〈d,∇2g(x)[d]〉, is sat-

isfied if

−α
2

2

(
〈d,∇2g(x)[d]〉+

Mgα

3

)
≥ −c2α

2〈d,∇2g(x)[d]〉.

This is equivalent to

〈d,∇2g(x)[d]〉+
Mgα

3
≤ 2c2〈d,∇2g(x)[d]〉

α ≤ 3(2c2 − 1)〈d,∇2g(x)[d]〉
Mg

α ≤ 3|2c2 − 1||〈d,∇2g(x)[d]〉|
Mg

,

since c2 < 1/2. Therefore, (6.19) is satisfied for all α ≤ min(α2(x), t2(x)). One readily

checks that t2(x) and α2(x) are positive. Therefore, there exists a nonempty interval

]0,min(α2(x), t2(x))] where the step-size satisfies the decrease condition (6.19) and defines

a next iterate inside C. Therefore the backtracking in Algorithm 9 returns a step-size

t satisfying t ≥ τ2 min(α2(x), t2(x)) in a finite number of iterations. In addition, the

decrease condition (6.19) gives

g(x)− g(x+ td) ≥ −c2t
2〈d,∇2g(x)[d]〉

≥ −c2τ
2
2 min(α2(x), t2(x))2〈d,∇2g(x)[d]〉.

Remark 6.2. It may seem surprising that α1 is a constant and α2(x) depends on x

through the quadratic term |〈d,∇2g(x)[d]〉|. This is a consequence of the way first-and

second-order directions are defined. The step-size for a first-order step multiplies the gra-

dient which can vary in norm whereas the step-size in second-order steps always multiplies

a unit-norm direction.

6.4.4 Worst-case global complexity

We are now in a position to give a formal version of our main result, the worst-case

complexity of the Gradient-Eigenstep algorithm for problem (P).

Theorem 6.17 (Complexity of Algorithm 7). Consider Problem (P) under A12, A13,

A14, A15 and A16. Let 0 < ε1 ≤ R/2 and let g be the lower bound of g over the compact

set C. Algorithm 7 produces an iterate xN1 ∈ C satisfying ‖∇g(xN1)‖ ≤ ε1 with

N1 ≤
g(x0)− g

c1τ1 min(α1, t1)ε2
1

,

154

where t1 = minx∈C t1(x) > 0.

Furthermore if 0 < ε2 <∞, Algorithm 7 also produces an iterate xN2 satisfying ‖∇g(xN2)‖ ≤
ε1 and λmin(∇2g(xN2))≥ −ε2 with

N2 ≤ (g(x0)−g)

[
min

(
c1τ1 min(α1, t1)ε2

1, c2τ
2
2 min

(
min

(
α02,

3|2c2 − 1|ε2

Mg

)
, t2

)2

ε2

)]−1

,

(6.30)

where t2 = minx∈C t2(x) > 0. The iterate xN1 is an (ε1, 2ε1)-FOCP of (P) and xN2 is an

(ε1, 2ε1, ε2 + Cε1)-SOCP of (P), where C is defined in Corollary 6.11.

Proof. We first show that the constants t1 = minx∈C t1(x) and t2 = minx∈C t2(x) are

positive. Recall from Equation (6.22) that

t1(x) = min

(√
R

2Ch

1

‖∇g(x)‖
,
(2βσmin(Dh(x))2 − σ1(Dh(x))Cλ(x))R

2Ch ‖∇g(x)‖2 ,
1

2β ‖Dh(x)‖2
op

)

One readily checks that t1(x) > 0 for all x ∈ C. The first term,
√
R/2Ch/ ‖∇g(x)‖ is

positive since ∇g is continuous over C and C is compact. Using that β > β̄1(A16), the

numerator of the second term is positive and bounded away from zero for all x ∈ C.
Using compactness of C and smoothness of h, the quantity ‖Dh(x)‖op is upper bounded

over C and therefore 1/2β ‖Dh(x)‖2
op is bounded away from zero over C. We note that t1

is a continuous function of x which is positive for all x in the compact set C. Therefore,

minx∈C t1(x) is attained at a point in C and t1 > 0. A similar process shows that t2 > 0.

The function t2(x) =
(
−σ1(Dh(x)) +

√
σ1(Dh(x))2 + 2ChR

)
/2Ch is continuous over C.

We also note that t2(x) > 0 for all x ∈ C since the constants R and Ch are positive as a

consequence of A12 and A14 respectively.

For every iteration k where a first-order step is performed, one has ‖∇g(xk)‖ > ε1,

while for second-order steps 〈d,∇2g(xk)[d]〉 < −ε2. Therefore, Equation (6.27) gives the

following decrease for first-order steps

g(xk)− g(xk+1) ≥ c1τ1 min(α1, t1(xk)) ‖∇g(xk)‖2

≥ c1τ1 min(α1, t1)ε2
1,

where t1 = minx∈C t1(x) > 0, as shown above. The decrease for second-order steps follows

from Equation (6.29), that is,

g(xk)− g(xk+1) ≥ −c2τ
2
2 min(α2(xk), t2(xk))

2〈d,∇2g(x)[d]〉

≥ c2τ
2
2 min

(
min

(
α02,

3|2c2 − 1||〈d,∇2g(xk)[d]〉|
Mg

)
, t2(xk)

)2

ε2

≥ c2τ
2
2 min

(
min

(
α02,

3|2c2 − 1|ε2

Mg

)
, t2

)2

ε2,

155

where t2 = minx∈C t2(x) > 0, as shown above. Since C is compact (A13) and g is

continuous on C, let g := minx∈C g(x) > −∞. Consider the case ε2 <∞. For any K ≥ 0,

we have

g(x0)− g ≥
K∑
k=0

g(xk)− g(xk+1) (6.31)

≥ K min

(
c1τ1 min(α1, t1)ε2

1, c2τ
2
2 min

(
min

(
α02,

3|2c2 − 1|ε2

Mg

)
, t2

)2

ε2

)
.

Given the definition of N2, Equation (6.31) tells us that K ≤ N2. Hence, if more than N2

iterations are performed, it must be that a point where ‖∇g(x)‖ ≤ ε1 and λmin(∇2g(x)) ≥
−ε2 has been encountered. In the case ε2 =∞, no second-order step is performed, which

simplifies as follows

g(x0)− g ≥
K∑
k=0

g(xk)− g(xk+1)

≥ Kc1τ1 min(α1, t1(xk)) ‖∇g(xk)‖2

≥ Kc1τ1 min(α1, t1)ε2
1.

The fact that xN1 and xN2 are respectively (ε1, 2ε1)-FOCP and (ε1, 2ε1, ε2 +Cε1)-SOCP

of (P) follows from Proposition 6.6 and Proposition 6.10.

6.5 Estimating the penalty parameter

The previous section establishes convergence results under the assumption that the penalty

parameter β is fixed and large enough to satisfy A16. In practice, it is rarely possible

to know whether this assumption is satisfied. Therefore, this section outlines a scheme

which estimates a suitable value for β without requiring A16. Let us define the value

B(x) := max {β1(x), β2(x), β3(x)} , (6.32)

where βi(x) for i = 1, 2, 3 are defined in Definition 6.5. Ensuring that β > B(xk)

for every iterate xk of Algorithm 7 is sufficient for the algorithm to run smoothly and

converge. Practically, it is possible to compute B(xk) at the current iterate while running

the algorithm to increase β if needed and ensure β > B(xk). However, changing β

throughout the algorithm would change the penalty function g, which invalidates the

convergence analysis.

To address this issue, we propose the plateau scheme in Algorithm 10. It calls Al-

gorithm 7 several times, each time for a fixed number of iterations and using a constant

value of β. Each call with a constant β is called a plateau. On each plateau, our analysis

156

from previous sections is informative since β is fixed, though possibly too small. With

each new call, the value of β and the length of the plateau (LP) are increased. The in-

crease is designed to ensure that, after sufficiently many calls, β and LP are large enough

for Algorithm 7 to converge and return. This stops the plateau scheme.

Algorithm 10 Plateau scheme

1: Given: Functions f and h, 0 ≤ ε1 ≤ R/2, ε2 ≥ 0, γ > 1, x ∈ C, β0 and LP0.
2: for ` = 0, 1, 2, . . . do
3: x = Gradient-Eigenstep(x, β`) with optional stopping criterion set to B(x) ≥ β`

and k > LP` . This is a call to Algorithm 7
4: if ‖∇g(x)‖ ≤ ε1 and λmin(∇2g(x)) ≥ −ε2 then
5: return
6: end if
7: if Algorithm 7 stopped because B(x) ≥ β` then
8: Set B = B(x)
9: Set LP`+1 =(γB/β`)

4LP` then β`+1 = γB
10: else
11: β`+1 = γβ` and LP`+1 = γ4LP`

12: end if
13: end for

We proceed to show that the plateau scheme (Algorithm 10) converges in a finite

number of iterations. Moreover, the complexity with respect to ε1, ε2 is of the same

order as Algorithm 7 up to logarithmic factors. Let K(β) be the right-hand side of

Equation (6.30) as a function of β,

K(β) = (g(x0)−g)

[
min

(
c1τ1 min(α1, t1)ε2

1, c2τ
2
2 min

(
min

(
α02,

3|2c2 − 1|ε2

Mg

)
, t2

)2

ε2

)]−1

.

This gives the worst-case number of iterations required for Algorithm 7 to achieve our

target tolerances using a constant value of β, according to Theorem 6.17. We show that

K(β) is upper bounded by a cubic function of β for β ≥ β̄.

Theorem 6.18. For ε2 < 1, there exists C3 > 0, independent of ε1, ε2 and β such that

for all β > β, we have

K(β) ≤ C3 max
(
ε−2

1 , ε−3
2

)
β3,

where β is defined in Equation (6.21).

Proof. Firstly, we find the dependence on β of the Lipschitz constants of the gradient

and Hessian of g, namely, Lg and Mg. From

g(x) = f(x)− 〈h(x), λ(x)〉+ β ‖h(x)‖2

157

and

∇g(x) = ∇f(x)−Dh(x)∗[λ(x)] + 2βDh(x)∗[h(x)]−Dλ(x)∗[h(x)],

it is clear that ∇g(x) and ∇2g(x) are affine in β, hence Lg(β), Mg(β) and ‖∇g(x)‖ are

affine functions of β as well. Therefore, it is possible to find a constant c such that

Lg ≤ cβ for all β > β. We apply that reasoning to all functions affine in β, since we are

interested in their behaviour for all β > β. We notice that g(x0) is also an affine function

of β. The value g does not depend on β. The formula K(β) depends on β through the

values g(x0), α1, t1, Lg and Mg. Indeed,

α1 = min

(
α01,

2(1− c1)

Lg

)
t1 = min

x∈C
min

(√
R

2Ch

1

‖∇g(x)‖
,
(2βσmin(Dh(x))2 − σ1(Dh(x))Cλ)R

2Ch ‖∇g(x)‖2 ,
1

2β ‖Dh(x)‖2
op

)

Examination shows that 1/t1 and 1/α1 are bounded by affine functions of β. That is,

there exists constants b1, b2, such that, for all β > β, we have 1/α1 ≤ b1β and 1/t1 ≤ b2β.

Define

α2 = min

(
α02,

3|2c2 − 1|ε2

Mg

)
.

Using ε2 < 1, there exists b3 such that,

1/α2 = max

(
1/α02,

Mg

3|2c2 − 1|ε2

)
≤ ε−1

2 max

(
1/α02,

Mg

3|2c2 − 1|

)
≤ b3βε

−1
2 .

Finally,

t2 = min
x∈C

(
−σ1(Dh(x)) +

√
σ1(Dh(x))2 + 2ChR

)
/2Ch

is independent of β. This implies the existence of a constant b4 such that 1/t2 ≤ b4. In

158

addition, for any a, b > 0, we have 1/min(a, b) = max(1/a, 1/b). For all β > β, this gives

K(β) = (g(x0)− g) max

(
1

c1τ1ε2
1 min(α1, t1)

,
1

c2τ 2
2 ε2 min

(
α2, t2

)2

)

= (g(x0)− g) max

(
max(1/α1, 1/t1)

c1τ1ε2
1

,
max

(
1/α2, 1/t2

)2

c2τ 2
2 ε2

)

≤ b0βmax

(
max(b1β, b2β)

c1τ1ε2
1

,
max

(
b3βε

−1
2 , b4

)2

c2τ 2
2 ε2

)

≤ b0βmax
(
ε−2

1 , ε−3
2

)
max

(
max(b1β, b2β)

c1τ1

,
max (b3β, b4)2

c2τ 2
2

)
.

We conclude that there exists C3 > 0, independent of ε1, ε2 and β such that, for all

β ≥ β, we have

K(β) ≤ C3 max
(
ε−2

1 , ε−3
2

)
β3.

We now state the main result of this section, which claims that the plateau scheme in

Algorithm 10 returns an (ε1, 2ε1, ε2 +Cε1)-SOSP point with the same global complexity

rate as Algorithm 7 up to logarithmic factors.

Theorem 6.19. Under A12, A13, A14 and A15, Algorithm 10 returns an (ε1, 2ε1, ε2 +

Cε1)-SOSP in at most O
(
max

{
ε−2

1 , ε−3
2

}
max

{
logγ ε

−2
1 , logγ ε

−3
2

})
iterations of Algo-

rithm 7, where C is defined in Corollary 6.11.

Proof. For C3 provided by Theorem 6.18, define the value C2 = C3 max
(
ε−2

1 , ε−3
2

)
which is

independent of β. Algorithm 10 is guaranteed to converge when β` > β and LP` ≥ K(β`),

that is, when β` is large enough to satisfy A16 and the length of the plateau is large

enough to allow Algorithm 7 to converge in a worst-case number of iterations. From

Algorithm 10, it is clear that β` ≥ β0γ
`. Therefore, if ` > dlogγ(β/β0)e, it follows that

β` ≥ β0γ
` > β0γ

logγ(β/β0) = β, (6.33)

which indicates for which ` large enough the condition β` > β is met. Regarding the length

of the plateaus, it is clear that LP` ≥ LP0γ
4`. One can also infer from Algorithm 10 that

β` ≤ max(β0, β)γ`. Indeed if β0 > β, then β` = β0γ
` since lines 8 and 9 of Algorithm 10

are not executed. When β ≥ β0, β` ≤ βγ`. Using that K(β) ≤ C2β
3 for all β > β, we

enforce

LP0γ
4` ≥ C2

(
max(β0, β)γ`

)3
, (6.34)

from which it follows that

LP` ≥ LP0γ
4` ≥ C2

(
max(β0, β)γ`

)3 ≥ C2β
3
` ≥ K(β`).

159

Equation (6.34) simplifies to

γ` ≥ C2 max(β0, β)3

LP0

or

` ≥
⌈

logγ

(
C2 max(β0, β)3

LP0

)⌉
.

In conclusion, the maximum number of plateaus is

`∗ := max

(⌈
logγ

(
C2 max(β0, β)3

LP0

)⌉
, dlogγ(β/β0)e+ 1

)
.

The maximum value of β is

β∗ = max(β0, β)γ`
∗
.

On any plateau the maximum number of iterations of Gradient-Eigenstep is K(β∗), be-

cause for β` = β∗, the plateau is long enough to allow convergence and β∗ ≥ β. The

worst-case number of Gradient-Eigenstep iterations is at most K(β∗)`∗ with

K(β∗)`∗ ≤ C3 max

(
1

ε2
1

,
1

ε3
2

)
(β∗)3 max

(⌈
logγ

(
C3 max (1/ε2

1, 1/ε
3
2) max(β0, β)3

LP0

)⌉
,

dlogγ(β/β0)e+ 1

)
.

6.6 Conclusions

In this chapter, we consider optimization problems with smooth equality constraints.

Under a regularity condition on the derivative of the constraints (A12), we propose a

definition of approximate criticality for problem (P), which has a natural geometric in-

terpretation and extends Riemannian optimality conditions to points near the feasible

set. To find such critical points, we consider a smooth penalty function (Fletcher’s aug-

mented Lagrangian). We establish connections between the approximate critical points

of Fletcher’s augmented Lagrangian and the approximate critical points of the original

constrained problem (P). We present Algorithm 7, which is shown to reach approximate

second-order critical points of (P) in at most O(ε−3) iterations, the optimal rate in this

setting. The only other work to date which achieved this optimal rate for an infeasible

method is (Cartis et al., 2019), which uses a different notion of approximate criticality.

The main drawback of our approach, is the necessity to identify a set C, where the

differential of the constraint is nonsingular, in order to run the algorithm. Similar smooth-

ness assumptions are made in related works which provide a worst-case complexity anal-

ysis (Cifuentes and Moitra, 2019; Xie and Wright, 2021).

Fletcher’s augmented Lagrangian may be considered impractical in view of the linear

system that must be solved at each iteration to evaluate the multipliers λ(x). However,

160

recent works show that it can still lead to the design of efficient algorithms and our

contribution further reinforces the theoretical appeal of Fletcher’s augmented Lagrangian.

As a result, directions of future research emerge. Consider a smooth function λ̂ : E →
Rm which coincides on M with the function λ(x) = (Dh(x)∗)† [∇f(x)]. This choice of

multipliers defines a corresponding function ĝ(x) = Lβ(x, λ̂(x)), a variant of the penalty

g. Recent works (Gao et al., 2019; Xiao et al., 2020; Xiao and Liu, 2021) show that

minimizing the function ĝ yields efficient algorithms for a particular choice of λ̂ on the

Stiefel manifold. Is there a way to generalize this concept to other manifolds ? What

theoretical guarantees can we hope to keep by using λ̂(x) instead of λ(x) ? Exploring

this could yield more practical Lagrangian-based infeasible methods to solve constrained

optimization problems with underlying smoothness.

161

Bibliography

Ablin, P. and Peyré, G. (2021). Fast and accurate optimization on the orthogonal mani-

fold without retraction. arXiv preprint arXiv:2102.07432.

Abraham, R., Marsden, J. E., and Ratiu, T. (2012). Manifolds, tensor analysis, and

applications, volume 75. Springer Science & Business Media.

Absil, P.-A., Baker, C. G., and Gallivan, K. A. (2007). Trust-region methods on Rieman-

nian manifolds. Found. Comput. Math., 7(3):303–330.

Absil, P.-A., Mahony, R., and Sepulchre, R. (2004). Riemannian geometry of grassmann

manifolds with a view on algorithmic computation. Acta Applicandae Mathematica,

80(2):199–220.

Absil, P.-A., Mahony, R., and Sepulchre, R. (2008). Optimization Algorithms on Matrix

Manifolds. Princeton University Press.

Absil, P.-A. and Malick, J. (2012). Projection-like retractions on matrix manifolds. SIAM

Journal on Optimization, 22(1):135–158.

Adamson, A. and Alexa, M. (2003). Approximating and intersecting surfaces from points.

In Proceedings of the 2003 Eurographics/ACM SIGGRAPH symposium on Geometry

processing, pages 230–239.

Agarwal, N., Boumal, N., Bullins, B., and Cartis, C. (2018). Adaptive regularization

with cubics on manifolds with a first-order analysis. arXiv preprint arXiv:1806.00065.

Andreani, R., Birgin, E. G., Mart́ınez, J. M., and Schuverdt, M. L. (2008). On aug-

mented lagrangian methods with general lower-level constraints. SIAM Journal on

Optimization, 18(4):1286–1309.

Andreani, R., Mart́ınez, J., and Schuverdt, M. (2007). On second-order optimality con-

ditions for nonlinear programming. Optimization, 56(5-6):529–542.

162

Arun, K. S., Huang, T. S., and Blostein, S. D. (1987). Least-squares fitting of two 3-d

point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-

9(5):698–700.

Bai, Y., Duchi, J., and Mei, S. (2019). Proximal algorithms for constrained com-

posite optimization, with applications to solving low-rank sdps. arXiv preprint

arXiv:1903.00184.

Bai, Y. and Mei, S. (2018). Analysis of sequential quadratic programming through the

lens of riemannian optimization. arXiv preprint arXiv:1805.08756.

Bajaj, C. L., Bernardini, F., and Xu, G. (1995). Automatic reconstruction of surfaces and

scalar fields from 3d scans. In Proceedings of the 22nd annual conference on Computer

graphics and interactive techniques, pages 109–118.

Balzano, L., Nowak, R., and Recht, B. (2010). Online identification and tracking of

subspaces from highly incomplete information. In Communication, Control, and Com-

puting (Allerton), 2010 48th Annual Allerton Conference on, pages 704–711. IEEE.

Bandeira, A. S., Boumal, N., and Singer, A. (2017). Tightness of the maximum likelihood

semidefinite relaxation for angular synchronization. Mathematical Programming, 163(1-

2):145–167.

Bellekens, B., Spruyt, V., Berkvens, R., and Weyn, M. (2014). A survey of rigid 3d

pointcloud registration algorithms. In AMBIENT 2014: the Fourth International Con-

ference on Ambient Computing, Applications, Services and Technologies, August 24-28,

2014, Rome, Italy, pages 8–13.

Bertsekas, D. P. (1982). Constrained Optimization and Lagrange Multiplier Methods.

Elsevier.

Besl, P. J. and McKay, N. D. (1992). Method for registration of 3-d shapes. In Sen-

sor Fusion IV: Control Paradigms and Data Structures, volume 1611, pages 586–607.

International Society for Optics and Photonics.

Bhojanapalli, S., Neyshabur, B., and Srebro, N. (2016). Global optimality of local search

for low rank matrix recovery. In Advances in Neural Information Processing Systems,

pages 3873–3881.

Birgin, E. G., Gardenghi, J., Mart́ınez, J. M., Santos, S. A., and Toint, P. L. (2017).

Worst-case evaluation complexity for unconstrained nonlinear optimization using high-

order regularized models. Mathematical Programming, 163(1-2):359–368.

163

Birgin, E. G., Haeser, G., and Ramos, A. (2018). Augmented lagrangians with constrained

subproblems and convergence to second-order stationary points. Computational Opti-

mization and Applications, 69(1):51–75.

Birgin, E. G. and Martnez, J. M. (2019). Complexity and performance of an augmented

lagrangian algorithm.

Bishop, C. M. (2006). Pattern recognition. Machine learning, 128(9).

Biswas, P., Liang, T.-C., Toh, K.-C., Ye, Y., and Wang, T.-C. (2006). Semidefinite

programming approaches for sensor network localization with noisy distance measure-

ments. IEEE transactions on automation science and engineering, 3(4):360–371.

Biswas, P., Toh, K.-C., and Ye, Y. (2008). A distributed sdp approach for large-scale

noisy anchor-free graph realization with applications to molecular conformation. SIAM

Journal on Scientific Computing, 30(3):1251–1277.

Bolte, J., Sabach, S., and Teboulle, M. (2013). Proximal alternating linearized mini-

mization for nonconvex and nonsmooth problems. Mathematical Programming, 146(1-

2):459–494.

Boumal, N. (2014). Optimization and estimation on manifolds. PhD thesis, Universite

Catholique de Louvain.

Boumal, N. (2016). Nonconvex phase synchronization. SIAM Journal on Optimization,

26(4):2355–2377.

Boumal, N. (2020). An introduction to optimization on smooth manifolds. Available

online.

Boumal, N. and Absil, P.-a. (2011). Rtrmc: A riemannian trust-region method for low-

rank matrix completion. In Advances in neural information processing systems, pages

406–414.

Boumal, N. and Absil, P.-A. (2015). Low-rank matrix completion via preconditioned

optimization on the grassmann manifold. Linear Algebra and its Applications, 475:200–

239.

Boumal, N., Absil, P.-A., and Cartis, C. (2019). Global rates of convergence for nonconvex

optimization on manifolds. IMA Journal of Numerical Analysis, 39(1):1–33.

Boumal, N., Mishra, B., Absil, P.-A., and Sepulchre, R. (2014). Manopt, a Matlab toolbox

for optimization on manifolds. Journal of Machine Learning Research, 15:1455–1459.

164

Boumal, N., Voroninski, V., and Bandeira, A. S. (2020). Deterministic guarantees for

burer-monteiro factorizations of smooth semidefinite programs. Communications on

Pure and Applied Mathematics, 73(3):581–608.

Cambier, L. and Absil, P.-A. (2016). Robust low-rank matrix completion by riemannian

optimization. SIAM Journal on Scientific Computing, 38(5):S440–S460.

Candes, E. J. and Plan, Y. (2011). Tight oracle inequalities for low-rank matrix recov-

ery from a minimal number of noisy random measurements. IEEE Transactions on

Information Theory, 57(4):2342–2359.

Candès, E. J. and Tao, T. (2010). The power of convex relaxation: Near-optimal matrix

completion. IEEE Transactions on Information Theory, 56(5):2053–2080.

Cartis, C., Gould, N., and Toint, P. (2012). Complexity bounds for second-order opti-

mality in unconstrained optimization. Journal of Complexity, 28(1):93–108.

Cartis, C., Gould, N. I., and Toint, P. L. (2010). On the complexity of steepest descent,

newton’s and regularized newton’s methods for nonconvex unconstrained optimization

problems. Siam journal on optimization, 20(6):2833–2852.

Cartis, C., Gould, N. I., and Toint, P. L. (2011). On the evaluation complexity of com-

posite function minimization with applications to nonconvex nonlinear programming.

SIAM Journal on Optimization, 21(4):1721–1739.

Cartis, C., Gould, N. I., and Toint, P. L. (2015). On the evaluation complexity of con-

strained nonlinear least-squares and general constrained nonlinear optimization using

second-order methods. SIAM Journal on Numerical Analysis, 53(2):836–851.

Cartis, C., Gould, N. I., and Toint, P. L. (2019). Optimality of orders one to three and

beyond: characterization and evaluation complexity in constrained nonconvex opti-

mization. Journal of Complexity, 53:68–94.

Cartis, C., Gould, N. I. M., and Toint, P. L. (2022). Evaluation complexity of algorithms

for nonconvex optimization. MOS-SIAM Series on Optimization. (forthcoming).

Cayton, L. (2005). Algorithms for manifold learning. Univ. of California at San Diego

Tech. Rep, 12(1-17):1.

Chaudhury, K. N., Khoo, Y., and Singer, A. (2015). Global registration of multiple point

clouds using semidefinite programming. SIAM Journal on Optimization, 25(1):468–501.

165

Chen, Y. and Medioni, G. (1992). Object modelling by registration of multiple range

images. Image and vision computing, 10(3):145–155.

Chui, H. and Rangarajan, A. (2003). A new point matching algorithm for non-rigid

registration. Computer Vision and Image Understanding, 89(2-3):114–141.

Cifuentes, D. (2019). Burer-monteiro guarantees for general semidefinite programs.

Cifuentes, D. and Moitra, A. (2019). Polynomial time guarantees for the burer-monteiro

method.

Conn, A. R., Gould, N. I., and Toint, P. (1991). A globally convergent augmented

lagrangian algorithm for optimization with general constraints and simple bounds.

SIAM Journal on Numerical Analysis, 28(2):545–572.

Conn, A. R., Gould, N. I., and Toint, P. L. (2000). Trust region methods, volume 1. Siam.

Cox, D., Little, J., O’Shea, D., and Sweedler, M. (1994). Ideals, varieties, and algorithms.

American Mathematical Monthly, 101(6):582–586.

Cucuringu, M., Lipman, Y., and Singer, A. (2012a). Sensor network localization by

eigenvector synchronization over the euclidean group. ACM Transactions on Sensor

Networks (TOSN), 8(3):1–42.

Cucuringu, M., Singer, A., and Cowburn, D. (2012b). Eigenvector synchronization, graph

rigidity and the molecule problem. Information and Inference: A Journal of the IMA,

1(1):21–67.

Dai, W., Kerman, E., and Milenkovic, O. (2012). A geometric approach to low-rank

matrix completion. IEEE Transactions on Information Theory, 58(1):237–247.

Davenport, M. A. and Romberg, J. (2016). An overview of low-rank matrix recovery

from incomplete observations. arXiv preprint arXiv:1601.06422.

de Carvalho Bento, G., da Cruz Neto, J. X., and Oliveira, P. R. (2016). A new approach

to the proximal point method: convergence on general riemannian manifolds. Journal

of Optimization Theory and Applications, 168(3):743–755.

Demmel, J., Gu, M., Eisenstat, S., Slapničar, I., Veselić, K., and Drmač, Z. (1999). Com-

puting the singular value decomposition with high relative accuracy. Linear Algebra

and its Applications, 299(1-3):21–80.

166

Deutsch, S., Ortega, A., and Medioni, G. (2018). Robust denoising of piece-wise smooth

manifolds. In 2018 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 2786–2790. IEEE.

Dhillon, I. S., Heath, J. R., Strohmer, T., and Tropp, J. A. (2008). Constructing pack-

ings in grassmannian manifolds via alternating projection. Experimental mathematics,

17(1):9–35.

Eckart, C. and Young, G. (1936). The approximation of one matrix by another of lower

rank. Psychometrika, 1(3):211–218.

Edelman, A., Arias, T. A., and Smith, S. T. (1998). The geometry of algorithms with or-

thogonality constraints. SIAM journal on Matrix Analysis and Applications, 20(2):303–

353.

Eftekhari, A., Ongie, G., Balzano, L., and Wakin, M. B. (2019). Streaming principal

component analysis from incomplete data. Journal of Machine Learning Research,

20(86):1–62.

Eldar, Y. C. and Mishali, M. (2009). Robust recovery of signals from a structured union

of subspaces. IEEE Transactions on Information Theory, 55(11):5302–5316.

Elhamifar, E. and Vidal, R. (2013). Sparse subspace clustering: Algorithm, theory,

and applications. IEEE transactions on pattern analysis and machine intelligence,

35(11):2765–2781.

Eriksson, B., Balzano, L., and Nowak, R. (2012). High-rank matrix completion.

Fan, J. and Cheng, J. (2018). Matrix completion by deep matrix factorization. Neural

Networks, 98:34–41.

Fan, J. and Chow, T. W. (2018). Non-linear matrix completion. Pattern Recognition,

77:378–394.

Fan, J. and Udell, M. (2019). Online high rank matrix completion. In The IEEE Con-

ference on Computer Vision and Pattern Recognition (CVPR).

Fan, J., Yang, C., and Udell, M. (2020). Robust non-linear matrix factorization for

dictionary learning, denoising, and clustering.

Fan, J., Zhang, Y., and Udell, M. (2019). Polynomial matrix completion for missing data

imputation and transductive learning.

167

Fan, J., Zhao, M., and Chow, T. W. S. (2018). Matrix completion via sparse factorization

solved by accelerated proximal alternating linearized minimization. IEEE Transactions

on Big Data, pages 1–1.

Fang, X. and Toh, K.-C. (2013). Using a distributed sdp approach to solve simulated pro-

tein molecular conformation problems. In Distance Geometry, pages 351–376. Springer.

Fletcher, R. (1970). A class of methods for nonlinear programming with termination and

convergence properties. Integer and nonlinear programming, pages 157–173.

Forsyth, D. and Ponce, J. (2011). Computer vision: A modern approach. Prentice hall.

Gao, B., Liu, X., and Yuan, Y.-x. (2019). Parallelizable algorithms for optimization

problems with orthogonality constraints. SIAM Journal on Scientific Computing,

41(3):A1949–A1983.

Ge, R., Lee, J. D., and Ma, T. (2016). Matrix completion has no spurious local mini-

mum. In Lee, D. D., Sugiyama, M., Luxburg, U. V., Guyon, I., and Garnett, R., edi-

tors, Advances in Neural Information Processing Systems 29, pages 2973–2981. Curran

Associates, Inc.

Ghojogh, B. and Crowley, M. (2019). The theory behind overfitting, cross validation,

regularization, bagging, and boosting: Tutorial.

Gold, S., Rangarajan, A., Lu, C.-P., Pappu, S., and Mjolsness, E. (1998). New algorithms

for 2d and 3d point matching: Pose estimation and correspondence. Pattern recognition,

31(8):1019–1031.

Golub, G. H. and Van Loan, C. F. (1996). Matrix Computations. The Johns Hopkins

University Press, third edition.

Gong, D., Sha, F., and Medioni, G. (2010). Locally linear denoising on image manifolds.

In Proceedings of the Thirteenth International Conference on Artificial Intelligence and

Statistics, pages 265–272.

Goshtasby, A. A. (2005). 2-D and 3-D image registration: for medical, remote sensing,

and industrial applications. John Wiley & Sons.

Goyens, F., Cartis, C., and Eftekhari, A. (2019). Nonlinear matrix recovery. NeurIPS

Workshop Beyond First Order Methods in Machine Learning.

Goyens, F., Cartis, C., and Eftekhari, A. (2021). Nonlinear matrix recovery using opti-

mization on the grassmann manifold. arXiv preprint arXiv:2109.06095.

168

Goyens, F., Chretien, S., and Cartis, C. (2020). Smoothing of point clouds using rieman-

nian optimization. ICML Workshop Beyond first order methods in machine learning.

Grapiglia, G. N. and xiang Yuan, Y. (2019). On the complexity of an augmented la-

grangian method for nonconvex optimization.

Grapiglia, G. N. and Yuan, Y.-x. (2021). On the complexity of an augmented lagrangian

method for nonconvex optimization. IMA Journal of Numerical Analysis, 41(2):1508–

1530.

Halko, N., Martinsson, P.-G., and Tropp, J. A. (2011). Finding structure with random-

ness: Probabilistic algorithms for constructing approximate matrix decompositions.

SIAM review, 53(2):217–288.

Hao, Z., Ma, S., Chen, H., and Liu, J. (2021). Dataset denoising based on manifold

assumption. 2021:1–14.

Harvey, N. J., Karger, D. R., and Yekhanin, S. (2006). The complexity of matrix com-

pletion. In Proceedings of the seventeenth annual ACM-SIAM symposium on Discrete

algorithm, pages 1103–1111. Society for Industrial and Applied Mathematics.

Hauser, R. A., Eftekhari, A., and Matzinger, H. F. (2018). Pca by determinant op-

timisation has no spurious local optima. In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pages 1504–1511.

Hein, M. and Maier, M. (2007). Manifold denoising. In Advances in neural information

processing systems, pages 561–568.

Hill, D. L., Hawkes, D. J., Crossman, J., Gleeson, M., Cox, T., Bracey, E., Strong, A.,

and Graves, P. (1991). Registration of mr and ct images for skull base surgery using

point-like anatomical features. The British journal of radiology, 64(767):1030–1035.

Hoffmann, H. (2007). Kernel pca for novelty detection. Pattern recognition, 40(3):863–

874.

Horn, R. and Johnson, C. (1991). Topics in matrix analysis. Cambridge University Press.

Hosseini, S. (2015). Convergence of nonsmooth descent methods via kurdyka-lojasiewicz

inequality on riemannian manifolds. Hausdorff Center for Mathematics and Institute

for Numerical Simulation, University of Bonn (2015,(INS Preprint No. 1523)).

Huang, X., Mei, G., Zhang, J., and Abbas, R. (2021). A comprehensive survey on point

cloud registration. arXiv preprint arXiv:2103.02690.

169

Jain, P., Meka, R., and Dhillon, I. S. (2010). Guaranteed rank minimization via singular

value projection. In Advances in Neural Information Processing Systems, pages 937–

945.

Jia, X., Kanzow, C., Mehlitz, P., and Wachsmuth, G. (2021). An augmented lagrangian

method for optimization problems with structured geometric constraints.

Jorge Nocedal, S. J. W. (1999). Numerical Optimization. Springer.

Keshavan, R. H., Montanari, A., and Oh, S. (2010). Matrix completion from a few entries.

IEEE transactions on information theory, 56(6):2980–2998.

Keshavan, R. H. and Oh, S. (2009). A gradient descent algorithm on the grassman

manifold for matrix completion. arXiv preprint arXiv:0910.5260.

Kohler, J. M. and Lucchi, A. (2017). Sub-sampled cubic regularization for non-convex

optimization. In International Conference on Machine Learning, pages 1895–1904.

PMLR.

Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factorization techniques for recom-

mender systems. 42(8):30–37.

Krishnan, S., Lee, P. Y., Moore, J. B., Venkatasubramanian, S., et al. (2005). Global

registration of multiple 3d point sets via optimization-on-a-manifold. In Symposium

on Geometry Processing, pages 187–196.

Lee, J. M. (2018). Introduction to Riemannian manifolds. Springer.

Lerman, G., Zhang, T., et al. (2011). Robust recovery of multiple subspaces by geometric

lp minimization. The Annals of Statistics, 39(5):2686–2715.

Li, Q. and Tang, G. (2017). The nonconvex geometry of low-rank matrix optimizations

with general objective functions. In 2017 IEEE Global Conference on Signal and In-

formation Processing (GlobalSIP), pages 1235–1239.

Liu, C. and Boumal, N. (2020). Simple algorithms for optimization on Riemannian

manifolds with constraints. Applied Mathematics and Optimization, 82(3):949–981.

Low, K.-L. (2004). Linear least-squares optimization for point-to-plane icp surface regis-

tration. Chapel Hill, University of North Carolina, 4(10):1–3.

Mirsky, L. (1960). Symmetric gauge functions and unitarily invariant norms. The quar-

terly journal of mathematics, 11(1):50–59.

170

Mohan, K. and Fazel, M. (2012). Iterative reweighted algorithms for matrix rank mini-

mization. Journal of Machine Learning Research, 13(Nov):3441–3473.

Myronenko, A. and Song, X. (2010). Point set registration: Coherent point drift. IEEE

transactions on pattern analysis and machine intelligence, 32(12):2262–2275.

Nesterov, Y. (2004). Introductory Lectures on Convex Optimization. Springer US.

Nesterov, Y. (2018). Lectures on convex optimization.

Nguyen, L. T., Kim, J., and Shim, B. (2019). Low-rank matrix completion: A contem-

porary survey. IEEE Access, 7:94215–94237.

Nocedal, J. and Wright, S. (2006). Numerical optimization. Springer Science & Business

Media.

Ongie, G., Pimentel-Alarcón, D., Balzano, L., Willett, R., and Nowak, R. D. (2021).

Tensor methods for nonlinear matrix completion. SIAM Journal on Mathematics of

Data Science, 3(1):253–279.

Ongie, G., Willett, R., Nowak, R. D., and Balzano, L. (2017). Algebraic variety models

for high-rank matrix completion. In Precup, D. and Teh, Y. W., editors, Proceedings of

the 34th International Conference on Machine Learning, volume 70 of Proceedings of

Machine Learning Research, pages 2691–2700, International Convention Centre, Syd-

ney, Australia. PMLR.

Polyak, R. A. (2009). On the local quadratic convergence of the primal–dual augmented

lagrangian method. Optimization Methods & Software, 24(3):369–379.

Pottmann, H., Leopoldseder, S., and Hofer, M. (2004). Registration without icp. Com-

puter Vision and Image Understanding, 95(1):54–71.

Rahimi, A., Recht, B., et al. (2007). Random features for large-scale kernel machines. In

NIPS, volume 3, page 5. Citeseer.

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. Journal

of the American Statistical association, 66(336):846–850.

Rapcsák, T. (1997). Smooth Nonlinear Optimization in R n. Springer US.

Recht, B. (2011). A simpler approach to matrix completion. Journal of Machine Learning

Research, 12(Dec):3413–3430.

171

Recht, B., Fazel, M., and Parrilo, P. A. (2010). Guaranteed minimum-rank solutions of

linear matrix equations via nuclear norm minimization. SIAM review, 52(3):471–501.

Recht, B. and Ré, C. (2013). Parallel stochastic gradient algorithms for large-scale matrix

completion. Mathematical Programming Computation, 5(2):201–226.

Royer, C. W., ONeill, M., and Wright, S. J. (2020). A newton-cg algorithm with com-

plexity guarantees for smooth unconstrained optimization. Mathematical Programming,

180(1):451–488.

Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants of the icp algorithm. In Proceed-

ings third international conference on 3-D digital imaging and modeling, pages 145–152.

IEEE.

Sahin, M. F., Eftekhari, A., Alacaoglu, A., Latorre, F., and Cevher, V. (2019). An

inexact augmented lagrangian framework for nonconvex optimization with nonlinear

constraints. arXiv preprint arXiv:1906.11357.

Schölkopf, B., Smola, A., and Müller, K.-R. (1997). Kernel principal component analysis.

In International conference on artificial neural networks, pages 583–588. Springer.

Schönemann, P. H. (1966). A generalized solution of the orthogonal procrustes problem.

Psychometrika, 31(1):1–10.

Segal, A., Haehnel, D., and Thrun, S. (2009). Generalized-icp. In Robotics: science and

systems, volume 2, page 435. Seattle, WA.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From

theory to algorithms. Cambridge university press.

Sharp, G. C., Lee, S. W., and Wehe, D. K. (2004). Multiview registration of 3d scenes by

minimizing error between coordinate frames. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 26(8):1037–1050.

Singer, A. (2006). From graph to manifold laplacian: The convergence rate. Applied and

Computational Harmonic Analysis, 21(1):128–134.

Stein, C. M. (1981). Estimation of the mean of a multivariate normal distribution. The

annals of Statistics, pages 1135–1151.

Stewart, G. W. (1998). Perturbation theory for the singular value decomposition. Tech-

nical report.

172

Studholme, C., Hill, D. L., and Hawkes, D. J. (1995). Automated 3d registration of

truncated mr and ct images of the head. In BMVC, volume 95, pages 27–36. Citeseer.

Subrahmonia, J., Cooper, D. B., and Keren, D. (1996). Practical reliable bayesian recog-

nition of 2d and 3d objects using implicit polynomials and algebraic invariants. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 18(5):505–519.

Sun, J., Qu, Q., and Wright, J. (2015). When are nonconvex problems not scary? arXiv

preprint arXiv:1510.06096.

Sun, J., Qu, Q., and Wright, J. (2017). Complete dictionary recovery over the sphere

i: Overview and the geometric picture. IEEE Transactions on Information Theory,

63(2):853–884.

Sun, J., Qu, Q., and Wright, J. (2018). A geometric analysis of phase retrieval. Founda-

tions of Computational Mathematics, 18(5):1131–1198.

Tam, G. K., Cheng, Z.-Q., Lai, Y.-K., Langbein, F. C., Liu, Y., Marshall, D., Martin,

R. R., Sun, X.-F., and Rosin, P. L. (2013). Registration of 3d point clouds and meshes:

a survey from rigid to nonrigid. IEEE transactions on visualization and computer

graphics, 19(7):1199–1217.

Tanner, J. and Wei, K. (2013). Normalized iterative hard thresholding for matrix com-

pletion. SIAM Journal on Scientific Computing, 35(5):S104–S125.

Toh, K.-C. and Yun, S. (2010). An accelerated proximal gradient algorithm for nuclear

norm regularized linear least squares problems. Pacific Journal of optimization, 6(615-

640):15.

Townsend, J., Koep, N., and Weichwald, S. (2016). Pymanopt: A python tool-

box for optimization on manifolds using automatic differentiation. arXiv preprint

arXiv:1603.03236.

Tsin, Y. and Kanade, T. (2004). A correlation-based approach to robust point set regis-

tration. In European conference on computer vision, pages 558–569. Springer.

Tzeneva, T. (2011). Global alignment of multiple 3-d scans using eigevector synchro-

nization. Senior Thesis, Princeton University (supervised by S. Rusinkiewicz and A.

Singer).

Uschmajew, A. and Vandereycken, B. (2018). On critical points of quadratic low-rank

matrix optimization problems. Tech. report (submitted).

173

Van Kaick, O., Zhang, H., Hamarneh, G., and Cohen-Or, D. (2011). A survey on shape

correspondence. In Computer Graphics Forum, volume 30, pages 1681–1707. Wiley

Online Library.

Vandereycken, B. (2013). Low-rank matrix completion by riemannian optimization. SIAM

Journal on Optimization, 23(2):1214–1236.

Wang, B. and Tu, Z. (2013). Sparse subspace denoising for image manifolds. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages

468–475.

Wen, Z., Yin, W., and Zhang, Y. (2012). Solving a low-rank factorization model for

matrix completion by a nonlinear successive over-relaxation algorithm. Mathematical

Programming Computation, 4(4):333–361.

Weyrich, T., Pauly, M., Keiser, R., Heinzle, S., Scandella, S., and Gross, M. H. (2004).

Post-processing of scanned 3d surface data. SPBG, 4:85–94.

Williams, J. A. and Bennamoun, M. (2000). Simultaneous registration of multiple point

sets using orthonormal matrices. In 2000 IEEE International Conference on Acoustics,

Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100), volume 4, pages

2199–2202. IEEE.

Xiao, N. and Liu, X. (2021). Solving optimization problems over the stiefel manifold by

smooth exact penalty function.

Xiao, N., Liu, X., and Yuan, Y.-x. (2020). A class of smooth exact penalty function meth-

ods for optimization problems with orthogonality constraints. Optimization Methods

and Software, pages 1–37.

Xie, Y. and Wright, S. J. (2019). Complexity of proximal augmented lagrangian for

nonconvex optimization with nonlinear equality constraints.

Xie, Y. and Wright, S. J. (2021). Complexity of proximal augmented lagrangian for non-

convex optimization with nonlinear equality constraints. Journal of Scientific Com-

puting, 86(3):1–30.

Xu, P., Roosta, F., and Mahoney, M. W. (2020). Newton-type methods for non-convex op-

timization under inexact hessian information. Mathematical Programming, 184(1):35–

70.

Xu, R. and Wunsch, D. (2008). Clustering, volume 10. John Wiley & Sons.

174

Zwicker, M., Pauly, M., Knoll, O., and Gross, M. (2002). Pointshop 3d: An interac-

tive system for point-based surface editing. ACM Transactions on Graphics (TOG),

21(3):322–329.

175

Appendix A

Proofs

A.1 Proofs for Chapter 4

Proposition A.1. For the monomial kernel Kd, the Euclidean gradient of the cost func-

tion (4.3) is given by

∇Xf(X,W) = 2dX (Kd−1(X)� PW⊥) and ∇Wf(X,W) = −2Kd(X)W.

For (∆X ,∆W) ∈ Rn×s × Rs×r, the application of the Hessian is given by

∇2f(X,W)

(
∆X

∆W

)
=

(
∇2
Xf(X,W)[∆X] +∇W∇Xf(X,W)[∇W]
∇X∇Wf(X,W)[∆X] +∇2

Wf(X,W)[∆W]

)
.

where

∇2
Wf(X,W)[δW] = −2Kd(X)δW

∇2
Xf(X,W)[∆X] = 2d(d− 1)X

(
Kd−2(X)� (X>∆X + ∆>XX)� PW⊥

)
+ 2d∆X (Kd−1(X)� PW⊥)

∇X∇Wf(X,W)[∆X] = −2d
(
Kd−1(X)� (X>∆X + ∆>XX)

)
W

∇W∇Xf(X,W)[δW] = −2dX
(
Kd−1(X)� (W∆>W−∆WW

>)
)
.

Proof. First, we make the following Taylor expansion of the monomial kernel. For some

∆X ∈ Rn×s,

Kd(X + ∆X) = Kd(X) + dKd−1(X)� (X>∆X + ∆>XX) +O(∆2
X),

where � is an entry-wise product. At W ∈ Grass(N, r), the horizontal lift of tangent

vectors is of the form ∆W = W⊥B ∈ RN×r for some W⊥ ∈ RN×(N−r) and B ∈ R(N−r)×r.

We have

PW+∆W
= WW>+W∆>W + ∆WW

>

= PW +W∆>W + ∆WW
>+O(∆2

W).

176

Let us write

f(X,W) = trace (Kd(X)− PWKd(X)) .

We find the gradient in X using direct computation,

∇Xf(X,W) = ∇Xtrace (PW⊥Kd(X))

= 2dX (Kd−1(X)� PW⊥) .

since PW⊥ is symmetric. Quite naturally we find ∇Wf(X,W) with the expansion,

f(X,W + ∆W) = trace (Kd(X)− PW+∆W
Kd(X)) ,

= trace
(
Kd(X)− (PW +W∆>W + ∆WW

>)Kd(X)
)

= trace
(
PW⊥Kd(X)− (W∆>W + ∆WW

>)K(dX)
)

= trace (PW⊥Kd(X))− trace
(
(W∆>W + ∆WW

>)Kd(X)
)

= f(X,W)− trace
(
W∆>WKd(X)

)
− trace

(
∆WW

>K(X))
)

= f(X,W) + 〈∆W ,−2Kd(X)W 〉,

and we observe∇Wf(X,W) = −2Kd(X)W . It follows that∇2
Wf(X,W)[E] = −2Kd(X)E.

To find the second derivative in X, consider

∇Xf(X + ∆X ,W) = 2d(X + ∆X (Kd−1(X + ∆X)� PU⊥)

= 2d(X + ∆X)
([

Kd−1(X) + (d− 1)Kd−2(X)� (X>∆X + ∆>XX)
]
� PW⊥

)
= 2dX (Kd−1(X)� PW⊥) + 2d(d− 1)X

(
Kd−2(X)� (X>∆X + ∆>XX)� PW⊥

)
+ 2d∆X (Kd−1(X)� PW⊥) +O(∆2

X)

= ∇Xf(X,W) + 2d(d− 1)X
(
Kd−2(X)� (X>∆X + ∆>XX)� PW⊥

)
+ 2d∆X (Kd−1(X)� PW⊥) +O(∆2

X).

Thus we identify

∇2
Xf(X,W)[∆X] = 2d(d−1)X

(
Kd−2(X)� (X>∆X + ∆>XX)� PW⊥

)
+2d∆X (Kd−1(X)� PW⊥) .

We now compute the cross derivatives ∇W∇Xf(X,W)[∆W] and ∇X∇Wf(X,W)[∆W].

Consider

∇Wf(X + ∆X ,W) = −2Kd(X + ∆X)W

= −2
(
Kd(X) + dKd−1(X)� (X>∆X + ∆>XX)

)
W

= −2Kd(X)W − 2d
(
Kd−1(X)� (X>∆X + ∆>XX)

)
W

= ∇Uf(X,W)− 2d
(
Kd−1(X)� (X>∆X + ∆>XX)

)
W,

177

which yields

∇X∇Wf(X,W)[∆X] = −2d
(
Kd−1(X)� (X>∆X + ∆>XX)

)
W ∈ s× r.

Similarly we have

∇Xf(X,W + ∆W) = 2dX
(
Kd−1(X)� P(W+∆W)⊥

)
= 2dX

(
Kd−1(X)� (PW⊥ −W∆>W−∆WW

>)
)

= 2dX (Kd−1(X)� PW⊥)− 2dX
(
Kd−1(X)� (W∆>W−∆WW

>)
)

= ∇Xf(X,W)− 2dX
(
Kd−1(X)� (W∆>W−∆WW

>)
)
,

which gives

∇W∇Xf(X,W)[∇W] = −2dX
(
Kd−1(X)� (W∆>W−∆WW

>)
)
∈ n× s.

Proposition A.2. For the Gaussian kernel Kσ (Gaussian kernel), the Euclidean gradient

of the cost function (4.3) is given by

∇Xf(X,W) = − 2

σ2
X (diag (sum(Kσ � PW⊥ , 1))−Kσ � PW⊥) and ∇Wf(X,W) = −2Kσ(X)W.

where sum(Kσ�PW⊥ , 1) is the vector with the sum of each column of the matrix Kσ�PW⊥.

Proof. Recall that f(X,W) = trace (PW⊥Kσ(X,X)) and we write P = PW⊥ and K =

Kσ(X,X) to simplify the notations. Note that the matrices P ∈ Rs×s and K ∈ Rs×s are

symmetrical. We have

f(X,W) =
s∑
i=1

s∑
j=1

PijKij.

Hence, it comes

∇Xf(X,W) =
s∑
i=1

s∑
j=1

Pij∇XKij

= − 1

σ2

s∑
i=1

s∑
j=1

PijKij

[
. . . xi − xj . . . xj − xi . . .

]
= − 1

σ2

s∑
i=1

s∑
j=1

PijKij

(
xi
[
. . . 1 . . . −1 . . .

]
+ xj

[
. . . −1 . . . 1 . . .

])
.

178

Denote by aij ∈ Rs the vector with entry i equal to 1 and entry j equal to −1 and all the

other entries are zero. Then,

∇Xf(X,W) = − 1

σ2

(
s∑
i=1

s∑
j=1

PijKijxia
>
ij−

s∑
i=1

s∑
j=1

PijKijxja
>
ij

)

= − 1

σ2

(
s∑
i=1

xi

s∑
j=1

PijKija
>
ij−

s∑
j=1

xj

s∑
i=1

PijKija
>
ij

)

= − 1

σ2
(X(−W �K) +Xdiag(sum(K� P, 1))) ,

where � denotes an entry-wise product.

A.2 Proofs for Chapter 6

Example A.1 (The Stiefel manifold). Let E = Rn×p, the Stiefel manifold is defined as

St(n, p) = {X ∈ Rn×p : X>X = Ip}.

The manifold corresponds to the defining function h : Rn×p → Sym(p) : X 7→ h(X) =

X>X − Ip, where Sym(p) is the set of symmetric matrices of size p. For any R < 1,

all X ∈ Rn×p such that ‖h(X)‖ ≤ R, satisfy σmin(Dh(X)) ≥ 2σmin(X) ≥ 2
√

1−R.

Therefore, A12 is satisfied for any R < 1 and σ ≤ 2
√

1−R.

Proof. First note that the set Sym(p) has dimension p(p+ 1)/2. Therefore

σmin(Dh(X)) = σp(p+1)/2(Dh(X)),

by definition. The differential of the defining function h is given by

Dh(X) : Rn×p → Sym(p) : U 7→ Dh(X)[U] = X>U + U>X.

To find the region where Dh(X) is non-singular, we need to characterize a set of X ∈ Rn×p

such that X>U + U>X spans Sym(p). We show that this set is constituted of all the

matrices of full rank. Assume X has rank p; we can pick [V, V⊥] ∈ O(n) such that

X = V P , for some invertible P ∈ Rp×p. Any U ∈ Rn×p can be written as U = V A+V⊥B

for some A ∈ Rp×p and B ∈ R(n−p)×p. We find that Dh(X)[U] = P>A+A>P . Therefore,

Dh(X)[U] = 0 if and only if A = (P>)−1Ω, for some Ω ∈ Skew(p), i.e. p(p− 1)/2 degrees

of freedom and Ω> + Ω = 0. In other words, an antisymmetric Ω brings no contribution

to Dh(X)[U].

Therefore, consider U = V (P>)−1W , with W ∈ Sym(p), this gives Dh(X)[U] = 2W .

Hence Dh(X) spans Sym(p) for any full rank X ∈ Rn×p. By definition,

σmin(Dh(X)) = min
U

‖Dh(X)[U]‖F

‖U‖F

179

Let us express U as a function of W . Using X = V P yields

U = V (P>)−1W = XP−1(P>)−1W = X(X>X)−1W.

This allows to write

σmin(Dh(X)) = min
W∈Sym(p)

2 ‖W‖F

‖X(X>X)−1W‖F

≥ min
Y ∈Rp×p

2 ‖Y ‖F

‖X(X>X)−1Y ‖F

=
2

σmin(X†)

= 2σmin(X).

Take a singular value decomposition, X = U1ΣU>2 ,

‖h(X)‖ =
∥∥X>X − Ip

∥∥
F

=
∥∥U1(Σ>Σ− Ip)U

>
1

∥∥
F

=
∥∥Σ2 − Ip

∥∥
F
.

Take R > 0 such that ‖h(X)‖ ≤ R. This implies |σmin(X)2 − 1| ≤ R. Firstly assume

that σmin(X)2 < 1, which gives 1 − σmin(X)2 ≤ R or σmin(X)2 ≥ 1 − R. This allows to

write σmin(X) ≥
√

1−R. Now consider the case σmin(X)2 ≥ 1, where it is clear that

σmin(X) ≥
√

1−R. In conclusion, for any R < 1, all X such that ‖h(X)‖ ≤ R, satisfy

σmin(Dh(X)) ≥ 2σmin(X) ≥ 2
√

1−R.

Example A.2 (Convex quadratic constraint). Let E = Rn and consider the set M for

h(x) = x>Ax+ b>x+ c, where A ∈ Rn×n is symmetric and positive definite, b ∈ Rn and

c ∈ R. For any R < |h(x∗)|, where x∗ is the minimizer of the quadratic, all x ∈ Rn

satisfy σmin(Dh(x)) > 0. Additionally, σmin = minx∈C σmin(Dh(x)) > 0 by compactness of

C.

Proof. We have Dh(x) = 2Ax+ b. Since A is invertible, Dh(x) ∈ Rn is rank deficient at

the unique point where Dh(x∗) = 0, that is, x∗ = −1

2
A−1b, the minimizer of the quadratic

constraint. We need to find R such that h(x∗) > R, so that h(x) ≤ R =⇒ x 6= x∗.

h(x∗) = (x∗)>Ax∗ + b>x∗ + c

= −1

2
(A−1b)>A− 1

2
(A−1b)− 1

2
b>(A−1b) + c

=
1

4
(A−1b)>b− 1

2
b>A−1b+ c

= −1

4
b>A−1b>+ c.

180

So ‖h(x∗)‖ = |− 1

4
b>A−1b>+c| = |1

2
b>x∗+c|. We can take any R < ‖h(x∗)‖, then ∀x ∈ C,

we have σmin(Dh(x)) > 0.

Proposition A.3 ((Bertsekas, 1982), Prop. 4.22). Let g(x) = Lβ(x, λ(x)) be Fletcher’s

augmented Lagrangian and assume M⊂ D, where D = {x ∈ E : rank(Dh(x)) = m} and

M = {x ∈ E : h(x) = 0}.

1. For any β, if x is a first-order critical point of (P), then x is a first-order critical

point of g.

2. Let x ∈ D and β > β1(x). If x is a first-order critical point of g, then x is a

first-order critical point of (P).

3. Let x be a first-order critical point of (P) and let K be a compact subset of D.

Assume x is the unique global minimum of f over M ∩ K and that x is in the

interior of K. Then, there exists β large enough such that x is the unique global

minimum of g over K.

4. Let x ∈ D and β > β1(x). If x is a local minimum of g, then x is a local minimum

of (P).

Proof. 1. If x is a first-order critical point for (P), then h(x) = 0 and ∇f(x) =

Dh(x)∗[λ(x)] by definition. Therefore,

∇g(x) = ∇f(x)−Dh(x)∗[λ(x)] + 2βDh(x)∗[h(x)]−Dλ(x)∗[h(x)] = 0. (A.1)

2. Take x ∈ D with ∇g(x) = 0. We find that

0 = Dh(x)[∇g(x)]

= Dh(x)
[
∇
(
x 7→ f(x)− 〈h(x), λ(x)〉+ β ‖h(x)‖2)(x)

]
= Dh(x)[∇f(x)−Dh(x)∗[λ(x)] + 2βDh(x)∗[h(x)]−Dλ(x)∗[h(x)]]

= Dh(x)
[
gradMx

f(x)
]

+ 2βDh(x) [Dh(x)∗[h(x)]]−Dh(x)[Dλ(x)∗[h(x)]]

= {2βDh(x)Dh(x)∗ −Dh(x)Dλ(x)∗}h(x), (A.2)

where the term Dh(x)
[
gradMx

f(x)
]

vanishes because the Riemannian gradient of

f restricted to Mx is tangent to Mx at x, and by definition this tangent space is

the kernel of Dh(x). Using Lemma 6.5,

σmin (2βDh(x)Dh(x)∗ −Dh(x)Dλ(x)∗) ≥ σmin(2βDh(x)Dh(x)∗)− σ1(Dh(x)Dλ(x)∗)

≥ 2βσ2
min(Dh(x))− σ1(Dh(x))Cλ(x).

(A.3)

181

If β > β1(x) (Definition 6.5), we see from (A.3) that the linear operator that appears

on the right hand side of (A.2) is nonsingular, and therefore (A.2) implies h(x) = 0.

Going back to (A.1) and using ∇g(x) = 0 together with h(x) = 0, it follows that

∇f(x) = Dh(x)∗[λ(x)]. This proves that x is a first-order critical point of (P) with

multipliers λ(x).

3. The set K is compact and therefore, for any β, there exists a global minimizer of

g inside K. We proceed by contradiction. Therefore, for any integer k > 0, there

exists βk ≥ k and a global minimizer xk of g over K such that xk 6= x. This implies

g(xk) ≤ g(x) = f(x). (A.4)

Hence, lim supk−→∞ g(xk) ≤ f(x). We shall show that (xk)k∈N −→ x. Let x̄ be a

limit point of (xk)k∈N. Since βk −→∞, we have h(x̄) = 0. Therefore,

f(x̄) = g(x̄) ≤ f(x).

Given that xk ∈ K for all k, compactness ensures that x̄ ∈ K. Since x is the unique

global minimizer of f over K ∩M, it follows that x̄ = x.

Now we show that there exists some index k such that xk = x. Since xk → x, we

can take an open ball B centered around x such that xk ∈ B for k sufficiently large.

We also chose B such that cl(B) ⊂ K. From item 2, for all β ≥ β̄1, every critical

point of g inside B is a first-order critical point of (P). Hence, for all k sufficiently

large, xk is a first-order critical point of f on M (as it is a global min of g inside

B ⊂ K, it is a critical point of g and point 2 applies on the compact set cl(B)).

This implies h(xk) = 0 and f(xk) ≤ f(x) from (A.4). Since x is the unique global

minimizer of f over K ∩M, it follows that xk = x for all k sufficiently large. This

contradicts that xk 6= x for all k and proves the original statement.

4. From item 2, for all β > β1(x), if x is a local minimum of g, then x is a first-order

critical point of (P). This implies

f(x) = g(x)

since h(x) = 0. From the local optimality of x for g, there exists a ball B ⊂ E
centered at x such that

g(x) ≤ g(y) for all y ∈ B.

This holds a fortiori for all y ∈ B ∩M. Combining the last two results gives

f(x) = g(x) ≤ g(y) = f(y) for all y ∈ B ∩M (A.5)

182

where the equalities hold because x, y ∈ M imply h(x) = h(y) = 0, and the in-

equality holds owing to x, y ∈ B. Equation (A.5) implies that x is a local minimizer

of (P).

183

	Introduction
	Riemannian optimization
	Charts and manifolds
	Tangent vectors and differential map
	Embedded submanifolds
	Quotient manifolds

	Riemannian structure and gradients
	Riemannian submanifolds
	Riemannian quotient manifolds

	Connections and Hessians
	Riemannian submanifolds
	Riemannian quotient manifolds

	Optimality conditions
	Retractions
	Parallel transport
	Algorithms and implementations
	Riemannian gradient descent
	Riemannian trust-region
	Riemannian optimization toolboxes: Manopt and PyManopt

	Manifolds of interest
	Euclidean spaces
	Affine subspaces
	The Stiefel manifold: orthonormal matrices
	The orthogonal group and rotation matrices
	The Grassmann manifold
	Manifolds defined by h(x)=0

	Matrix recovery problems
	Low-rank matrix recovery
	Nonlinear matrix recovery
	Problem description and feature map
	The algebraic variety model
	Union of subspaces
	Clustering and the Gaussian kernel
	Related work

	Nonlinear matrix recovery on the Grassmann manifold
	Nonlinear matrix recovery as an optimization problem
	Kernel representation of the features
	Derivatives of the cost function

	Riemannian optimization algorithms
	Alternating minimization algorithms
	Convergence of the alternating minimization algorithm
	Global convergence results
	Convergence of the iterates using the Kurdyka-Lojasiewicz property

	Discussion of assumptions in convergence results
	Numerical experiments
	Implementation of the algorithms
	Test problems
	Testing methodology
	Numerical results

	Conclusions

	Applications of the algebraic variety model
	Denoising an algebraic variety
	Problem description
	The feature space and the monomial features
	Denoising as an optimization problem
	Statistical error estimation
	Numerical results

	Registration
	Problem set up
	Registration as an optimization problem
	Numerical results for noiseless registration
	Noisy registration
	Numerical results for noisy registration

	Conclusions

	Equality constrained optimization
	Introduction
	Assumptions
	Layered manifolds
	Optimality conditions

	Related work
	Properties of Fletcher's augmented Lagrangian
	Approximate first-order criticality
	Approximate second-order criticality
	Property of the region C

	Gradient-Eigenstep algorithm
	Algorithm
	First-order steps
	Second-order steps
	Worst-case global complexity

	Estimating the penalty parameter
	Conclusions

	Bibliography
	Proofs
	Proofs for Chapter 4
	Proofs for Chapter 6

