Worst-Case Complexity for the Minimization of Strict Saddle Functions on Manifolds

Florentin Goyens joint with Clément Royer

SIOPT, Seattle June 2, 2023

$$\min_{x \in \mathcal{M}} f(x)$$

where $f: \mathcal{M} \to \mathbb{R}$ is smooth and nonconvex.

How many iterations of an optimization algorithm are required in the worst-case to reach an <u>approximate solution</u> of (P) from an arbitrary initial $x_0 \in \mathcal{M}$?

How many iterations of an optimization algorithm are required in the worst-case to reach an <u>approximate solution</u> of (P) from an arbitrary initial $x_0 \in \mathcal{M}$?

Answer We answer this question for <u>strict saddle functions</u> with a Riemannian trust-region algorithm (exact and inexact versions).

Background: Complexity without the strict saddle assumption

Optimization on Manifolds

Minimize $f: \mathcal{M} \to \mathbb{R}$ where the feasible set \mathcal{M} is a Riemannian manifold.

 $Df(x)[\Delta] = \langle \operatorname{grad} f(x), \Delta \rangle \text{ with } \operatorname{grad}_{\mathcal{M}} f(x) \in \operatorname{T}_{x} \mathcal{M} \text{ and} \\ D^{2}f(x)[\Delta, \Delta] = \langle \operatorname{Hess}_{\mathcal{M}} f(x)[\Delta], \Delta \rangle \text{ with } \operatorname{Hess} f(x) \colon \operatorname{T}_{x} \mathcal{M} \to \operatorname{T}_{x} \mathcal{M}.$

- Produces feasible sequence of iterates $x_0, x_1, x_2 \dots \in \mathcal{M}$
- Requires $x_0 \in \mathcal{M}$ and retraction map $R_x \colon T_x \mathcal{M} \to \mathcal{M}$

Optimality conditions for Riemannian optimization algorithms

First-order critical points

 $x \in \mathcal{M}$ and $\operatorname{grad}_{\mathcal{M}} f(x) = 0$,

Second-order critical points

 $x \in \mathcal{M}, \quad \operatorname{grad}_{\mathcal{M}} f(x) = 0, \quad \text{and} \quad \operatorname{Hess}_{\mathcal{M}} f(x) \succeq 0.$

Their approximate version:

 $x \in \mathcal{M}, \quad \|\operatorname{grad}_{\mathcal{M}} f(x)\| \le \varepsilon_1, \quad \text{and} \quad \operatorname{Hess}_{\mathcal{M}} f(x) \succeq -\varepsilon_2 \operatorname{Id}.$

Gradient descent satisfies

$$f(x_k) - f(x_{k+1}) \ge c \cdot \|\operatorname{grad} f(x_k)\|^2 \text{ for all } k \ge 0.$$

As long as the algorithm has not converged $\|\operatorname{grad} f(x_k)\| \ge \varepsilon$,

$$\begin{cases} f(x_0) - f(x_1) \ge c \cdot \varepsilon^2 \\ f(x_1) - f(x_2) \ge c \cdot \varepsilon^2 \\ \vdots \\ f(x_{N-1}) - f(x_N) \ge c \cdot \varepsilon^2 \end{cases} \implies N \le \frac{f(x_0) - f(x_N)}{c\varepsilon^2} = \mathcal{O}(\varepsilon^{-2}).$$

?: Worst-case rates of optimization algorithms on manifolds are identical to the unconstrained case with respect to ε .

- Riemannian gradient descent produces a point $x \in \mathcal{M}$ that satisfies $\|\operatorname{grad}_{\mathcal{M}} f(x)\| \leq \varepsilon_1$ in at most $\mathcal{O}(\varepsilon_1^{-2})$ iterations
- Second-order Riemannian trust-region produces a point $x \in \mathcal{M}$ that satisfies $\|\operatorname{grad}_{\mathcal{M}} f(x)\| \leq \varepsilon_1$ and $\operatorname{Hess}_{\mathcal{M}} f(x) \succeq -\varepsilon_2 \operatorname{Id}$ in at most $\mathcal{O}\left(\max\left(\varepsilon_1^{-2}, \varepsilon_2^{-3}\right)\right)$ iterations.

Riemannian trust-region (RTR)

Algorithm 1 Riemannian trust-region (RTR)

- 1: Given: Tolerance $\varepsilon_g > 0$, $x_0 \in \mathcal{M}$, trust-region radius $\Delta_0 > 0$, $\overline{\Delta} > 0$, constants $0 < \eta_1 < \eta_2 < 1$ and $0 < \tau_1 < 1 < \tau_2$.
- 2: for k = 1, 2, ... do
- 3: Find step $s_k \in T_{x_k} \mathcal{M}$ which minimizes (approximately)

$$n_k(s) = f(x_k) + \langle s, \operatorname{grad} f(x_k) \rangle + \frac{1}{2} \langle s, H_k(s) \rangle \text{ subjet to } ||s|| \le \Delta_k.$$

$$(4.5)$$

4: Compute
$$\rho = \frac{f(x_k) - f \circ R_{x_k}(s_k)}{m_k(0) - m_k(s_k)}$$
 and apply $x_{k+1} = \begin{cases} x_k & \text{if } \rho < \eta_1 \\ R_{x_k}(s_k) & \text{if } \eta_1 \le \rho \end{cases}$
5:
$$\Delta_{k+1} = \begin{cases} \tau_1 \Delta_k & \text{if } \rho < \eta_1 \quad [\text{unsuccessful}] \\ \Delta_k & \text{if } \eta_1 \le \rho \le \eta_2 \quad [\text{successful}] \\ \tau_2 \Delta_k & \text{if } \rho > \eta_2 \quad [\text{very successful}] \end{cases}$$
(4.6)
6: $k \leftarrow k+1$
7: end for

• $g_k = \operatorname{grad} f(x_k)$ and $H_k = \nabla^2 (f \circ R_{x_k}) = \operatorname{Hess} f(x_k)$ (second-order accurate model and second-order retraction)

Riemannian trust-region (RTR)

Algorithm 1 Riemannian trust-region (RTR)

- 1: Given: Tolerance $\varepsilon_g > 0$, $x_0 \in \mathcal{M}$, trust-region radius $\Delta_0 > 0$, $\overline{\Delta} > 0$, constants $0 < \eta_1 < \eta_2 < 1$ and $0 < \tau_1 < 1 < \tau_2$.
- 2: for k = 1, 2, ... do

1

3: Find step $s_k \in T_{x_k} \mathcal{M}$ which minimizes (approximately)

$$n_k(s) = f(x_k) + \langle s, \operatorname{grad} f(x_k) \rangle + \frac{1}{2} \langle s, H_k(s) \rangle \text{ subjet to } ||s|| \le \Delta_k.$$

$$(4.5)$$

4: Compute
$$\rho = \frac{f(x_k) - f \circ R_{x_k}(s_k)}{m_k(0) - m_k(s_k)}$$
 and apply $x_{k+1} = \begin{cases} x_k & \text{if } \rho < \eta_1 \\ R_{x_k}(s_k) & \text{if } \eta_1 \le \rho \end{cases}$
5:
$$\Delta_{k+1} = \begin{cases} \tau_1 \Delta_k & \text{if } \rho < \eta_1 \quad [\text{unsuccessful}] \\ \Delta_k & \text{if } \eta_1 \le \rho \le \eta_2 \quad [\text{successful}] \\ \tau_2 \Delta_k & \text{if } \rho > \eta_2 \quad [\text{very successful}] \end{cases}$$
6: $k \leftarrow k+1$
7: end for

- $g_k = \operatorname{grad} f(x_k)$ and $H_k = \nabla^2 (f \circ R_{x_k}) = \operatorname{Hess} f(x_k)$ (second-order accurate model and second-order retraction)
- We adapt this algorithm to strict saddle functions

Part 2: Complexity with the strict saddle assumption

Saddle points make life difficult

Definition

If $\operatorname{grad} f(x) = 0$ but $x \in \mathcal{M}$ is not a local minimum, then x is a saddle point.

Figure 1: Saddle point with $\nabla^2 f(x) = 0$

- If λ_{min} (∇² f(x)) < 0, then
 x is a strict saddle point
- Strict saddle points can provably be escaped by algorithms!

Definition (Robust strict saddle functions on manifolds) There exists positive constants α, β, γ, δ such that, at any point x ∈ M, at least one of the following holds:
1. ||grad f(x)|| ≥ α (large gradient);
2. λ_{min}(Hess f(x)) ≤ -β (negative curvature of the Hessian);
3. there exists a local minimum x* such that x belongs to the set S = {y ∈ M: dist(x*, y) ≤ 2δ} which is geodesically convex, with λ_{min} (Hess f(y)) ≥ γ at every y ∈ S (local geodesic strong convexity).

Strict saddle functions appear in many problems of interest! (a.k.a. benign non-convexity)

Phase Retrieval: Recover $x \in \mathbb{C}^n$ from $b = |Ax| \in \mathbb{R}^m$ for some $A: \mathbb{C}^n \to \mathbb{C}^m$ with $m \ge 4n$. A natural formulation is

$$\min_{z \in \mathbb{C}^n} \frac{1}{4m} \sum_{k=1}^m (|a_k^* z|^2 - b_k^2)^2$$

which is a $(c, c/(n \log m), c, c/(n \log m))$ strict saddle function for some constant c (??).

Strict saddle properties have been investigated in many other applications, such as:

- Rayley quotient for eigenvalues (?)
- Burer-Monteiro Decomposition (??)
- Neural networks (??)
- Dictionary Learning (??)
- Matrix completion (??)
- For more, see https://sunju.org/research/nonconvex/

Take a step that is appropriate for the local landscape

- 1. If $\|\operatorname{grad} f(x)\| \ge \alpha$, take gradient step
- 2. If $\lambda_{\min}(\text{Hess}f(x)) \preceq -\beta \text{Id}$, take negative curvature step
- 3. If $\operatorname{Hess} f(x) \succeq \gamma \operatorname{Id}$, take (regularized) Newton step.

We embed these 3 steps in a single trust-region method

Algorithm 2 Exact strict saddle RTR algorithm

- 1: Given: Tolerance $\varepsilon_g > 0$, Constants α, β of the strict saddle function, $x_0 \in \mathcal{M}$, trust-region radius $\Delta_0 > 0$, $\bar{\Delta} > 0$, constants $0 < \eta_1 < \eta_2 < 1$ and $0 < \tau_1 < 1 < \tau_2$.
- 2: for k = 1, 2, ... do
- 3: **if** $\|\operatorname{grad} f(x_k)\| \ge \alpha$ **then**
- 4: Compute the Cauchy point: $s_k = \arg \min_{s \in T_{x_k} \mathcal{M}} \langle s, g_k \rangle$ subjet to $||s|| = \Delta_k$.
- 5: else if $\lambda_{\min}(\text{Hess}f(x_k)) \leq -\beta$ then
- 6: Compute s_k as the eigenstep, satisfying

$$||s_k|| = \Delta_k, \qquad \langle s_k, g_k \rangle \le 0 \qquad \text{and} \qquad \langle s_k, H_k s_k \rangle \le -\beta ||s_k||^2.$$

- 7: else $\triangleright H_k \succeq \gamma \operatorname{Id}$
- 8: Compute s_k as the exact solution to

$$\min_{s \in \mathrm{T}_{x_k} \mathcal{M}} f(x_k) + \langle s, \mathrm{grad} f(x_k) \rangle + \frac{1}{2} \langle s, H_k s \rangle \text{ subjet to } \|s\| \leq \Delta_k.$$

,

9: end if

10: Compute
$$\rho = \frac{f(x_k) - f \circ R_{x_k}(s_k)}{m_k(0) - m_k(s_k)}$$
 and apply $x_{k+1} = \begin{cases} x_k & \text{if } \rho < \eta_1 \\ R_{x_k}(s_k) & \text{if } \eta_1 \le \rho \end{cases}$

11:

$$\Delta_{k+1} = \begin{cases} \tau_1 \Delta_k & \text{if } \rho < \eta_1 \quad \text{[unsuccessful]} \\ \Delta_k & \text{if } \eta_1 \le \rho \le \eta_2 \quad \text{[successful]} \\ \tau_2 \Delta_k & \text{if } \rho > \eta_2 \quad \text{[very successful]} \end{cases}$$

12: $k \leftarrow k+1$ 13: end for

Theorem [G. and Royer]

Let $f: \mathcal{M} \to \mathbb{R}$ be a $(\alpha, \beta, \gamma, \delta)$ -strict saddle function on the manifold \mathcal{M} . If the pullback $f \circ R$ is twice Lipschitz continuously differentiable and R second-order, for any $x_0 \in \mathcal{M}$ the strict saddle Riemannian trust-region algorithm finds a point $x \in \mathcal{M}$ such that $\|\operatorname{grad} f(x)\| \leq \varepsilon$ and $\operatorname{Hess} f(x) \succeq \gamma \operatorname{Id}$ in at most

$$\mathcal{O}\left(\max(\alpha^{-2}\beta^{-1},\alpha^{-2}\gamma^{-1},\beta^{-3},\gamma^{-3},\gamma^{-2}\delta^{-1}) + \log\log\left(\gamma/\varepsilon\right)\right)$$

iterations.

Theorem [G. and Royer]

Let $f: \mathcal{M} \to \mathbb{R}$ be a $(\alpha, \beta, \gamma, \delta)$ -strict saddle function on the manifold \mathcal{M} . If the pullback $f \circ R$ is twice Lipschitz continuously differentiable and R second-order, for any $x_0 \in \mathcal{M}$ the strict saddle Riemannian trust-region algorithm finds a point $x \in \mathcal{M}$ such that $\|\text{grad} f(x)\| \leq \varepsilon$ and $\text{Hess} f(x) \succeq \gamma \text{Id in at most}$

$$\mathcal{O}\left(\max(\alpha^{-2}\beta^{-1},\alpha^{-2}\gamma^{-1},\beta^{-3},\gamma^{-3},\gamma^{-2}\delta^{-1}) + \log\log\left(\gamma/\varepsilon\right)\right)$$

iterations.

- Complexity is with respect to strict saddle parameters and no longer depends on ε (up to log-log factor)
- Similar result in (?) for a first-order algorithm, we improve the complexity in the local phase

Ingredients of the proofs

- Cauchy step: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\alpha^2)$ \longrightarrow follows from (Boumal, 2023) and $\|\text{grad}f(x_k)\| \ge \alpha$
- Eigenstep: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\beta^3)$ \longrightarrow follows from (Boumal, 2023) and $\lambda_{\min}(\text{Hess}f(x_k)) \le -\beta$

Ingredients of the proofs

- Cauchy step: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\alpha^2)$ \longrightarrow follows from (Boumal, 2023) and $\|\operatorname{grad} f(x_k)\| \ge \alpha$
- Eigenstep: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\beta^3)$ \longrightarrow follows from (Boumal, 2023) and $\lambda_{\min}(\text{Hess}f(x_k)) \le -\beta$
- Convex model step: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\gamma^3)$ \longrightarrow Adaptation of (?) to manifolds

Ingredients of the proofs

- Cauchy step: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\alpha^2)$ \longrightarrow follows from (Boumal, 2023) and $\|\operatorname{grad} f(x_k)\| \ge \alpha$
- Eigenstep: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\beta^3)$ \longrightarrow follows from (Boumal, 2023) and $\lambda_{\min}(\text{Hess}f(x_k)) \le -\beta$
- Convex model step: $f(x_k) f(x_{k+1}) \ge \mathcal{O}(\gamma^3)$ \longrightarrow Adaptation of (?) to manifolds
- Local phase: quadratic convergence in log log steps \rightarrow quantifying when the local phase becomes a pure Newton method (g-convexity + ideas from Cartis and Shek) with quadratic convergence $\|\operatorname{grad} f(x_{k+1})\| \leq c \|\operatorname{grad} f(x_k)\|^2$ (?)

Strict saddle RTR:

$$\mathcal{O}\left(\max(\alpha^{-2}\beta^{-1},\alpha^{-2}\gamma^{-1},\beta^{-3},\gamma^{-3},\gamma^{-2}\delta^{-1}) + \log\log\left(\gamma/\varepsilon\right)\right).$$

(?) For $f: \mathbb{R}^n \to \mathbb{R}$ that is γ -strongly convex over \mathbb{R}^n and Lipschitz Hessian, the Newton method with Armijo backtracking requires at most

$$\mathcal{O}\left(\gamma^{-5} + \log\log\left(\varepsilon^{-1}\right)\right)$$

iterations to find a point such that $\|\nabla f(x)\| \leq \varepsilon$

The Steihaug-Toint approach: truncated CG

We don't want to compute $\lambda_{\min}(H_k)$ at every iteration to branch between cases 2 and 3:

 \Longrightarrow Approximate solutions of the trust-region subproblem

The Steihaug-Toint approach: truncated CG

We don't want to compute $\lambda_{\min}(H_k)$ at every iteration to branch between cases 2 and 3:

 \Longrightarrow Approximate solutions of the trust-region subproblem

• Apply conjugate gradient (CG) to the linear system $H_k s = -g_k$ as long as H_k appears γ -strongly convex in CG directions

The Steihaug-Toint approach: truncated CG

We don't want to compute $\lambda_{\min}(H_k)$ at every iteration to branch between cases 2 and 3:

 \Longrightarrow Approximate solutions of the trust-region subproblem

- Apply conjugate gradient (CG) to the linear system $H_k s = -g_k$ as long as H_k appears γ -strongly convex in CG directions
- Stop if the residual $||H_k s + g_k||$ is small enough or $||s|| = \Delta_k$.
- If $H_k \succeq \gamma I$, CG reaches a small residual in at most $\min(n, \tilde{\mathcal{O}}(\gamma^{-1/2}))$ matrix-vector products (?).
- When H_k ∠ 0, if curvature below γ is encountered in H_k, take a negative curvature step such that ||s_k|| = Δ_k.
- If $\lambda_{\min}(H_k) \leq -\beta$, the Lanczos method finds a direction of curvature $-\beta$ in at most $\min(n, \tilde{\mathcal{O}}(\ln(n/p)\beta^{-1/2}))$ matrix-vector products with probability p (?).

 \implies similar complexity guarantees which count the number of matrix-vector products

Main points:

- Landscape-aware second-order optimization algorithm for strict saddle functions
- The worst-case complexity depends on the landscape parameters $(\alpha, \beta, \gamma, \delta)$ instead of the problem accuracy ε
- Quadratic local convergence of second-order method.
- Estimation of the landscape parameters, see (?)

Thank you !

References

Nicolas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University Press, 2023. doi: 10.1017/9781009166164.