
Worst-Case Complexity for the
Minimization of Strict Saddle Functions on
Manifolds

Florentin Goyens
joint with
Clément Royer

SIOPT, Seattle
June 2, 2023



Problem (P)

min
x∈M

f (x) (P)
where f : M→ R is smooth and nonconvex.
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How many iterations of an optimization algorithm are required in the
worst-case to reach an approximate solution of (P) from an arbitrary
initial x0 ∈M ?

Answer We answer this question for strict saddle functions with a
Riemannian trust-region algorithm (exact and inexact versions).
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Background: Complexity
without the strict saddle
assumption
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Optimization on Manifolds

Minimize f : M→ R where the feasible setM is a Riemannian
manifold.

x
gradMf(x)

M

TxM

Df(x)[∆] = 〈gradf(x),∆〉 with gradMf(x) ∈ TxM and
D2f(x)[∆,∆] = 〈HessMf(x)[∆],∆〉 with Hessf(x) : TxM→ TxM.

• Produces feasible sequence of iterates x0, x1, x2 · · · ∈ M
• Requires x0 ∈M and retraction map Rx : TxM→M
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Optimality conditions for Riemannian optimization algo-
rithms

First-order critical points

x ∈M and gradMf(x) = 0,

Second-order critical points

x ∈M, gradMf(x) = 0, and HessMf(x) � 0.

Their approximate version:

x ∈M, ‖gradMf(x)‖ ≤ ε1, and HessMf(x) � −ε2Id.
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Quick example: Complexity of gradient descent

Gradient descent satisfies

f(xk)− f(xk+1) ≥ c · ‖gradf(xk)‖2 for all k ≥ 0.

As long as the algorithm has not converged ‖gradf(xk)‖ ≥ ε,

f(x0)− f(x1) ≥ c · ε2

f(x1)− f(x2) ≥ c · ε2

...

f(xN−1)− f(xN ) ≥ c · ε2

=⇒ N ≤ f(x0)− f(xN )

cε2
= O(ε−2).
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Complexity of Riemannian algorithms

?: Worst-case rates of optimization algorithms on manifolds are
identical to the unconstrained case with respect to ε.

• Riemannian gradient descent produces a point x ∈M that
satisfies ‖gradMf(x)‖ ≤ ε1 in at most O(ε−21 ) iterations

• Second-order Riemannian trust-region produces a point x ∈M
that satisfies ‖gradMf(x)‖ ≤ ε1 and HessMf(x) � −ε2Id in at
most O

(
max

(
ε−21 , ε−32

))
iterations.
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Riemannian trust-region (RTR)

• gk = gradf(xk) and Hk = ∇2(f ◦Rxk
) = Hessf(xk)

(second-order accurate model and second-order retraction)

• We adapt this algorithm to strict saddle functions
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Part 2: Complexity with the
strict saddle assumption
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Saddle points make life difficult

Definition
If gradf(x) = 0 but x ∈M is not a local minimum, then x is a saddle
point.

Figure 1: Saddle point with
∇2f(x) = 0

• If λmin

(
∇2f(x)

)
< 0, then

x is a strict saddle point

• Strict saddle points can
provably be escaped by
algorithms!
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Strict saddle functions on manifolds

Definition (Robust strict saddle functions on manifolds)
There exists positive constants α, β, γ, δ such that, at any
point x ∈M, at least one of the following holds:
1. ‖gradf(x)‖ ≥ α (large gradient);

2. λmin(Hessf(x)) ≤ −β (negative curvature of the Hessian);

3. there exists a local minimum x∗ such that x belongs to
the set S = {y ∈M : dist(x∗, y) ≤ 2δ} which is
geodesically convex, with λmin (Hessf(y)) ≥ γ at every
y ∈ S (local geodesic strong convexity).

Strict saddle functions appear in many problems of interest! (a.k.a.
benign non-convexity)
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Examples of strict saddle problems

Phase Retrieval: Recover x ∈ Cn from b = |Ax| ∈ Rm for some
A : Cn → Cm with m ≥ 4n. A natural formulation is

min
z∈Cn

1

4m

m∑
k=1

(|a∗kz|2 − b2k)2

which is a (c, c/(n logm), c, c/(n logm)) strict saddle function for
some constant c (??).
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Examples of strict saddle problems

Strict saddle properties have been investigated in many other
applications, such as:

• Rayley quotient for eigenvalues (?)

• Burer-Monteiro Decomposition (??)

• Neural networks (??)

• Dictionary Learning (??)

• Matrix completion (??)

• For more, see https://sunju.org/research/nonconvex/
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Our landscape-aware algorithm for strict saddle functions

Take a step that is appropriate for the local landscape

1. If ‖gradf(x)‖ ≥ α, take gradient step

2. If λmin (Hessf(x)) � −βId, take negative curvature step

3. If Hessf(x) � γId, take (regularized) Newton step.

We embed these 3 steps in a single trust-region method
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Complexity of Riemannian trust-region for strict saddle

Theorem [G. and Royer]
Let f : M → R be a (α, β, γ, δ)-strict saddle function on the
manifoldM. If the pullback f◦R is twice Lipschitz continuously
differentiable and R second-order, for any x0 ∈ M the strict
saddle Riemannian trust-region algorithm finds a point x ∈ M
such that ‖gradf(x)‖ ≤ ε and Hessf(x) � γId in at most

O
(
max(α−2β−1, α−2γ−1, β−3, γ−3, γ−2δ−1) + log log (γ/ε)

)
iterations.

• Complexity is with respect to strict saddle parameters and no
longer depends on ε (up to log-log factor)

• Similar result in (?) for a first-order algorithm, we improve the
complexity in the local phase
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Ingredients of the proofs

• Cauchy step: f(xk)− f(xk+1) ≥ O(α2)

−→ follows from (Boumal, 2023) and ‖gradf(xk)‖ ≥ α
• Eigenstep: f(xk)− f(xk+1) ≥ O(β3)

−→ follows from (Boumal, 2023) and λmin (Hessf(xk)) ≤ −β

• Convex model step: f(xk)− f(xk+1) ≥ O(γ3)

−→ Adaptation of (?) to manifolds

• Local phase: quadratic convergence in log log steps
−→ quantifying when the local phase becomes a pure Newton
method (g-convexity + ideas from Cartis and Shek) with
quadratic convergence ‖gradf(xk+1)‖ ≤ c ‖gradf(xk)‖2 (?)
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Complexity mimics convex optimization

Strict saddle RTR:

O
(
max(α−2β−1, α−2γ−1, β−3, γ−3, γ−2δ−1) + log log (γ/ε)

)
.

(?) For f : Rn → R that is γ-strongly convex over Rn and Lip-
schitz Hessian, the Newton method with Armijo backtracking
requires at most

O
(
γ−5 + log log

(
ε−1
))

iterations to find a point such that ‖∇f(x)‖ ≤ ε
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The Steihaug-Toint approach: truncated CG

We don’t want to compute λmin(Hk) at every iteration to branch
between cases 2 and 3:
=⇒ Approximate solutions of the trust-region subproblem

• Apply conjugate gradient (CG) to the linear system Hks = −gk
as long as Hk appears γ-strongly convex in CG directions

• Stop if the residual ‖Hks+ gk‖ is small enough or ‖s‖ = ∆k.
• If Hk � γI, CG reaches a small residual in at most

min(n, Õ(γ−1/2)) matrix-vector products (?).
• When Hk � 0, if curvature below γ is encountered in Hk, take a

negative curvature step such that ‖sk‖ = ∆k.
• If λmin(Hk) ≤ −β, the Lanczos method finds a direction of

curvature −β in at most min(n, Õ(ln(n/p)β−1/2)) matrix-vector
products with probability p (?).

=⇒ similar complexity guarantees which count the number of
matrix-vector products
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Conclusion

Main points:

• Landscape-aware second-order optimization algorithm for strict
saddle functions

• The worst-case complexity depends on the landscape parameters
(α, β, γ, δ) instead of the problem accuracy ε

• Quadratic local convergence of second-order method.

• Estimation of the landscape parameters, see (?)
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Questions

Thank you !
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