Worst-Case Complexity for the

Minimization of Strict Saddle Functions on Manifolds

Florentin Goyens
joint with
Clément Royer

SIOPT, Seattle
June 2, 2023

Problem (P)

$$
\min _{x \in \mathcal{M}} f(x)
$$

where $f: \mathcal{M} \rightarrow \mathbb{R}$ is smooth and nonconvex.

How many iterations of an optimization algorithm are required in the worst-case to reach an approximate solution of (P) from an arbitrary initial $x_{0} \in \mathcal{M}$?

How many iterations of an optimization algorithm are required in the worst-case to reach an approximate solution of (P) from an arbitrary initial $x_{0} \in \mathcal{M}$?

Answer We answer this question for strict saddle functions with a Riemannian trust-region algorithm (exact and inexact versions).

Background: Complexity without the strict saddle assumption

Optimization on Manifolds

Minimize $f: \mathcal{M} \rightarrow \mathbb{R}$ where the feasible set \mathcal{M} is a Riemannian manifold.

$\mathrm{D} f(x)[\Delta]=\langle\operatorname{grad} f(x), \Delta\rangle$ with $\operatorname{grad}_{\mathcal{M}} f(x) \in \mathrm{T}_{x} \mathcal{M}$ and $\mathrm{D}^{2} f(x)[\Delta, \Delta]=\left\langle\operatorname{Hess}_{\mathcal{M}} f(x)[\Delta], \Delta\right\rangle$ with $\operatorname{Hess} f(x): \mathrm{T}_{x} \mathcal{M} \rightarrow \mathrm{~T}_{x} \mathcal{M}$.

- Produces feasible sequence of iterates $x_{0}, x_{1}, x_{2} \cdots \in \mathcal{M}$
- Requires $x_{0} \in \mathcal{M}$ and retraction map $\mathrm{R}_{x}: \mathrm{T}_{x} \mathcal{M} \rightarrow \mathcal{M}$

Optimality conditions for Riemannian optimization algorithms

First-order critical points

$$
x \in \mathcal{M} \quad \text { and } \quad \operatorname{grad}_{\mathcal{M}} f(x)=0,
$$

Second-order critical points

$$
x \in \mathcal{M}, \quad \operatorname{grad}_{\mathcal{M}} f(x)=0, \quad \text { and } \quad \operatorname{Hess}_{\mathcal{M}} f(x) \succeq 0 .
$$

Their approximate version:

$$
x \in \mathcal{M}, \quad\left\|\operatorname{grad}_{\mathcal{M}} f(x)\right\| \leq \varepsilon_{1}, \quad \text { and } \quad \operatorname{Hess}_{\mathcal{M}} f(x) \succeq-\varepsilon_{2} \mathrm{Id} .
$$

Quick example: Complexity of gradient descent

Gradient descent satisfies

$$
f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq c \cdot\left\|\operatorname{grad} f\left(x_{k}\right)\right\|^{2} \text { for all } k \geq 0 .
$$

As long as the algorithm has not converged $\left\|\operatorname{grad} f\left(x_{k}\right)\right\| \geq \varepsilon$,

$$
\left\{\begin{array}{l}
f\left(x_{0}\right)-f\left(x_{1}\right) \geq c \cdot \varepsilon^{2} \\
f\left(x_{1}\right)-f\left(x_{2}\right) \geq c \cdot \varepsilon^{2} \\
\quad \vdots \\
f\left(x_{N-1}\right)-f\left(x_{N}\right) \geq c \cdot \varepsilon^{2}
\end{array} \Longrightarrow N \leq \frac{f\left(x_{0}\right)-f\left(x_{N}\right)}{c \varepsilon^{2}}=\mathcal{O}\left(\varepsilon^{-2}\right) .\right.
$$

Complexity of Riemannian algorithms

?: Worst-case rates of optimization algorithms on manifolds are identical to the unconstrained case with respect to ε.

- Riemannian gradient descent produces a point $x \in \mathcal{M}$ that satisfies $\left\|\operatorname{grad}_{\mathcal{M}} f(x)\right\| \leq \varepsilon_{1}$ in at most $\mathcal{O}\left(\varepsilon_{1}^{-2}\right)$ iterations
- Second-order Riemannian trust-region produces a point $x \in \mathcal{M}$ that satisfies $\left\|\operatorname{grad}_{\mathcal{M}} f(x)\right\| \leq \varepsilon_{1}$ and $\operatorname{Hess}_{\mathcal{M}} f(x) \succeq-\varepsilon_{2}$ Id in at most $\mathcal{O}\left(\max \left(\varepsilon_{1}^{-2}, \varepsilon_{2}^{-3}\right)\right)$ iterations.

Riemannian trust-region (RTR)

```
Algorithm 1 Riemannian trust-region (RTR)
    : Given: Tolerance \(\varepsilon_{g}>0, x_{0} \in \mathcal{M}\), trust-region radius \(\Delta_{0}>0, \bar{\Delta}>0\), constants \(0<\eta_{1}<\)
    \(\eta_{2}<1\) and \(0<\tau_{1}<1<\tau_{2}\).
    for \(k=1,2, \ldots\) do
        Find step \(s_{k} \in \mathrm{~T}_{x_{k}} \mathcal{M}\) which minimizes (approximately)
\[
\begin{equation*}
m_{k}(s)=f\left(x_{k}\right)+\left\langle s, \operatorname{grad} f\left(x_{k}\right)\right\rangle+\frac{1}{2}\left\langle s, H_{k}(s)\right\rangle \text { subjet to }\|s\| \leq \Delta_{k} \tag{4.5}
\end{equation*}
\]
4: \(\quad\) Compute \(\rho=\frac{f\left(x_{k}\right)-f \circ R_{x_{k}}\left(s_{k}\right)}{m_{k}(0)-m_{k}\left(s_{k}\right)}\) and apply \(x_{k+1}= \begin{cases}x_{k} & \text { if } \rho<\eta_{1} \\ R_{x_{k}}\left(s_{k}\right) & \text { if } \eta_{1} \leq \rho\end{cases}\)
\[
\Delta_{k+1}=\left\{\begin{array}{lrr}
\tau_{1} \Delta_{k} & \text { if } \rho<\eta_{1} & \text { [unsuccessful] }  \tag{4.6}\\
\Delta_{k} & \text { if } \eta_{1} \leq \rho \leq \eta_{2} & \text { [successful] } \\
\tau_{2} \Delta_{k} & \text { if } \rho>\eta_{2} & \text { [very successful] }
\end{array}\right.
\]
\(k \leftarrow k+1\)
end for
```

- $g_{k}=\operatorname{grad} f\left(x_{k}\right)$ and $H_{k}=\nabla^{2}\left(f \circ R_{x_{k}}\right)=\operatorname{Hess} f\left(x_{k}\right)$ (second-order accurate model and second-order retraction)

Riemannian trust-region (RTR)

```
Algorithm 1 Riemannian trust-region (RTR)
    Given: Tolerance \(\varepsilon_{g}>0, x_{0} \in \mathcal{M}\), trust-region radius \(\Delta_{0}>0, \bar{\Delta}>0\), constants \(0<\eta_{1}<\)
    \(\eta_{2}<1\) and \(0<\tau_{1}<1<\tau_{2}\).
    for \(k=1,2, \ldots\) do
        Find step \(s_{k} \in \mathrm{~T}_{x_{k}} \mathcal{M}\) which minimizes (approximately)
\[
\begin{equation*}
m_{k}(s)=f\left(x_{k}\right)+\left\langle s, \operatorname{grad} f\left(x_{k}\right)\right\rangle+\frac{1}{2}\left\langle s, H_{k}(s)\right\rangle \text { subjet to }\|s\| \leq \Delta_{k} \tag{4.5}
\end{equation*}
\]
4: \(\quad\) Compute \(\rho=\frac{f\left(x_{k}\right)-f \circ R_{x_{k}}\left(s_{k}\right)}{m_{k}(0)-m_{k}\left(s_{k}\right)}\) and apply \(x_{k+1}= \begin{cases}x_{k} & \text { if } \rho<\eta_{1} \\ R_{x_{k}}\left(s_{k}\right) & \text { if } \eta_{1} \leq \rho\end{cases}\)
5:
\[
\Delta_{k+1}=\left\{\begin{array}{lrr}
\tau_{1} \Delta_{k} & \text { if } \rho<\eta_{1} & \text { [unsuccessful] }  \tag{4.6}\\
\Delta_{k} & \text { if } \eta_{1} \leq \rho \leq \eta_{2} & \text { [successful] } \\
\tau_{2} \Delta_{k} & \text { if } \rho>\eta_{2} & \text { [very successful] }
\end{array}\right.
\]
\(k \leftarrow k+1\)
end for
```

- $g_{k}=\operatorname{grad} f\left(x_{k}\right)$ and $H_{k}=\nabla^{2}\left(f \circ R_{x_{k}}\right)=\operatorname{Hess} f\left(x_{k}\right)$ (second-order accurate model and second-order retraction)
- We adapt this algorithm to strict saddle functions

Part 2: Complexity with the strict saddle assumption

Saddle points make life difficult

Definition If $\operatorname{grad} f(x)=0$ but $x \in \mathcal{M}$ is not a local minimum, then x is a saddle point.

- If $\lambda_{\text {min }}\left(\nabla^{2} f(x)\right)<0$, then x is a strict saddle point
- Strict saddle points can provably be escaped by algorithms!

Figure 1: Saddle point with $\nabla^{2} f(x)=0$

Strict saddle functions on manifolds

Definition (Robust strict saddle functions on manifolds)
There exists positive constants $\alpha, \beta, \gamma, \delta$ such that, at any
point $x \in \mathcal{M}$, at least one of the following holds:

1. $\|\operatorname{grad} f(x)\| \geq \alpha$ (large gradient);
2. $\lambda_{\min }(\operatorname{Hess} f(x)) \leq-\beta$ (negative curvature of the Hessian);
3. there exists a local minimum x^{*} such that x belongs to the set $S=\left\{y \in \mathcal{M}: \operatorname{dist}\left(x^{*}, y\right) \leq 2 \delta\right\}$ which is geodesically convex, with $\lambda_{\text {min }}(\operatorname{Hess} f(y)) \geq \gamma$ at every $y \in S$ (local geodesic strong convexity).

Strict saddle functions appear in many problems of interest! (a.k.a. benign non-convexity)

Examples of strict saddle problems

Phase Retrieval: Recover $x \in \mathbb{C}^{n}$ from $b=|A x| \in \mathbb{R}^{m}$ for some $A: \mathbb{C}^{n} \rightarrow \mathbb{C}^{m}$ with $m \geq 4 n$. A natural formulation is

$$
\min _{z \in \mathbb{C}^{n}} \frac{1}{4 m} \sum_{k=1}^{m}\left(\left|a_{k}^{*} z\right|^{2}-b_{k}^{2}\right)^{2}
$$

which is a $(c, c /(n \log m), c, c /(n \log m))$ strict saddle function for some constant $c(? ?)$.

Examples of strict saddle problems

Strict saddle properties have been investigated in many other applications, such as:

- Rayley quotient for eigenvalues (?)
- Burer-Monteiro Decomposition (??)
- Neural networks (??)
- Dictionary Learning (??)
- Matrix completion (??)
- For more, see https://sunju.org/research/nonconvex/

Our landscape-aware algorithm for strict saddle functions

Take a step that is appropriate for the local landscape

1. If $\|\operatorname{grad} f(x)\| \geq \alpha$, take gradient step
2. If $\lambda_{\min }(\operatorname{Hess} f(x)) \preceq-\beta$ Id, take negative curvature step
3. If $\operatorname{Hess} f(x) \succeq \gamma \mathrm{Id}$, take (regularized) Newton step.

We embed these 3 steps in a single trust-region method

```
Algorithm 2 Exact strict saddle RTR algorithm
    Given: Tolerance \(\varepsilon_{g}>0\), Constants \(\alpha, \beta\) of the strict saddle function, \(x_{0} \in \mathcal{M}\), trust-region
    radius \(\Delta_{0}>0, \bar{\Delta}>0\), constants \(0<\eta_{1}<\eta_{2}<1\) and \(0<\tau_{1}<1<\tau_{2}\).
    for \(k=1,2, \ldots\) do
        if \(\left\|\operatorname{grad} f\left(x_{k}\right)\right\| \geq \alpha\) then
            Compute the Cauchy point: \(s_{k}=\arg \min _{s \in \mathrm{~T}_{x_{k}} \mathcal{M}}\left\langle s, g_{k}\right\rangle\) subjet to \(\|s\|=\Delta_{k}\).
        else if \(\lambda_{\min }\left(\operatorname{Hess} f\left(x_{k}\right)\right) \leq-\beta\) then
            Compute \(s_{k}\) as the eigenstep, satisfying
\[
\left\|s_{k}\right\|=\Delta_{k}, \quad\left\langle s_{k}, g_{k}\right\rangle \leq 0 \quad \text { and } \quad\left\langle s_{k}, H_{k} s_{k}\right\rangle \leq-\beta\left\|s_{k}\right\|^{2}
\]
        else \(\triangleright H_{k} \succeq \gamma\) Id
            Compute \(s_{k}\) as the exact solution to
\[
\min _{s \in \mathrm{~T}_{x_{k} \mathcal{M}}} f\left(x_{k}\right)+\left\langle s, \operatorname{grad} f\left(x_{k}\right)\right\rangle+\frac{1}{2}\left\langle s, H_{k} s\right\rangle \text { subjet to }\|s\| \leq \Delta_{k}
\]
end if
\[
\text { Compute } \rho=\frac{f\left(x_{k}\right)-f \circ R_{x_{k}}\left(s_{k}\right)}{m_{k}(0)-m_{k}\left(s_{k}\right)} \text { and apply } x_{k+1}= \begin{cases}x_{k} & \text { if } \rho<\eta_{1} \\ R_{x_{k}}\left(s_{k}\right) & \text { if } \eta_{1} \leq \rho\end{cases}
\]
\[
\Delta_{k+1}=\left\{\begin{array}{lrr}
\tau_{1} \Delta_{k} & \text { if } \rho<\eta_{1} & \text { [unsuccessful] } \\
\Delta_{k} & \text { if } \eta_{1} \leq \rho \leq \eta_{2} & \text { [successful] } \\
\tau_{2} \Delta_{k} & \text { if } \rho>\eta_{2} & \text { [very successful] }
\end{array}\right.
\]
    \(k \leftarrow k+1\)
    end for
```


Complexity of Riemannian trust-region for strict saddle

Theorem [G. and Royer]
Let $f: \mathcal{M} \rightarrow \mathbb{R}$ be a $(\alpha, \beta, \gamma, \delta)$-strict saddle function on the manifold \mathcal{M}. If the pullback $f \circ R$ is twice Lipschitz continuously differentiable and R second-order, for any $x_{0} \in \mathcal{M}$ the strict saddle Riemannian trust-region algorithm finds a point $x \in \mathcal{M}$ such that $\|\operatorname{grad} f(x)\| \leq \varepsilon$ and $\operatorname{Hess} f(x) \succeq \gamma$ Id in at most

$$
\mathcal{O}\left(\max \left(\alpha^{-2} \beta^{-1}, \alpha^{-2} \gamma^{-1}, \beta^{-3}, \gamma^{-3}, \gamma^{-2} \delta^{-1}\right)+\log \log (\gamma / \varepsilon)\right)
$$

iterations.

Complexity of Riemannian trust-region for strict saddle

Theorem [G. and Royer]
Let $f: \mathcal{M} \rightarrow \mathbb{R}$ be a $(\alpha, \beta, \gamma, \delta)$-strict saddle function on the manifold \mathcal{M}. If the pullback $f \circ R$ is twice Lipschitz continuously differentiable and R second-order, for any $x_{0} \in \mathcal{M}$ the strict saddle Riemannian trust-region algorithm finds a point $x \in \mathcal{M}$ such that $\|\operatorname{grad} f(x)\| \leq \varepsilon$ and $\operatorname{Hess} f(x) \succeq \gamma$ Id in at most

$$
\mathcal{O}\left(\max \left(\alpha^{-2} \beta^{-1}, \alpha^{-2} \gamma^{-1}, \beta^{-3}, \gamma^{-3}, \gamma^{-2} \delta^{-1}\right)+\log \log (\gamma / \varepsilon)\right)
$$

iterations.

- Complexity is with respect to strict saddle parameters and no longer depends on ε (up to \log-log factor)
- Similar result in (?) for a first-order algorithm, we improve the complexity in the local phase

Ingredients of the proofs

- Cauchy step: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\alpha^{2}\right)$
\longrightarrow follows from (Boumal, 2023) and $\left\|\operatorname{grad} f\left(x_{k}\right)\right\| \geq \alpha$
- Eigenstep: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\beta^{3}\right)$
\longrightarrow follows from (Boumal, 2023) and $\lambda_{\min }\left(\operatorname{Hess} f\left(x_{k}\right)\right) \leq-\beta$

Ingredients of the proofs

- Cauchy step: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\alpha^{2}\right)$
\longrightarrow follows from (Boumal, 2023) and $\left\|\operatorname{grad} f\left(x_{k}\right)\right\| \geq \alpha$
- Eigenstep: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\beta^{3}\right)$
\longrightarrow follows from (Boumal, 2023) and $\lambda_{\text {min }}\left(\operatorname{Hess} f\left(x_{k}\right)\right) \leq-\beta$
- Convex model step: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\gamma^{3}\right)$
\longrightarrow Adaptation of (?) to manifolds

Ingredients of the proofs

- Cauchy step: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\alpha^{2}\right)$
\longrightarrow follows from (Boumal, 2023) and $\left\|\operatorname{grad} f\left(x_{k}\right)\right\| \geq \alpha$
- Eigenstep: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\beta^{3}\right)$
\longrightarrow follows from (Boumal, 2023) and $\lambda_{\text {min }}\left(\operatorname{Hess} f\left(x_{k}\right)\right) \leq-\beta$
- Convex model step: $f\left(x_{k}\right)-f\left(x_{k+1}\right) \geq \mathcal{O}\left(\gamma^{3}\right)$
\longrightarrow Adaptation of (?) to manifolds
- Local phase: quadratic convergence in log log steps
\longrightarrow quantifying when the local phase becomes a pure Newton method (g-convexity + ideas from Cartis and Shek) with quadratic convergence $\left\|\operatorname{grad} f\left(x_{k+1}\right)\right\| \leq c\left\|\operatorname{grad} f\left(x_{k}\right)\right\|^{2}($? $)$

Complexity mimics convex optimization

Strict saddle RTR:

$$
\mathcal{O}\left(\max \left(\alpha^{-2} \beta^{-1}, \alpha^{-2} \gamma^{-1}, \beta^{-3}, \gamma^{-3}, \gamma^{-2} \delta^{-1}\right)+\log \log (\gamma / \varepsilon)\right) .
$$

(?) For $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that is γ-strongly convex over \mathbb{R}^{n} and Lipschitz Hessian, the Newton method with Armijo backtracking requires at most

$$
\mathcal{O}\left(\gamma^{-5}+\log \log \left(\varepsilon^{-1}\right)\right)
$$

iterations to find a point such that $\|\nabla f(x)\| \leq \varepsilon$

The Steihaug-Toint approach: truncated CG

We don't want to compute $\lambda_{\min }\left(H_{k}\right)$ at every iteration to branch between cases 2 and 3:
\Longrightarrow Approximate solutions of the trust-region subproblem

The Steihaug-Toint approach: truncated CG

We don't want to compute $\lambda_{\min }\left(H_{k}\right)$ at every iteration to branch between cases 2 and 3 :
\Longrightarrow Approximate solutions of the trust-region subproblem

- Apply conjugate gradient (CG) to the linear system $H_{k} s=-g_{k}$ as long as H_{k} appears γ-strongly convex in CG directions

The Steihaug-Toint approach: truncated CG

We don't want to compute $\lambda_{\min }\left(H_{k}\right)$ at every iteration to branch between cases 2 and 3:
\Longrightarrow Approximate solutions of the trust-region subproblem

- Apply conjugate gradient (CG) to the linear system $H_{k} s=-g_{k}$ as long as H_{k} appears γ-strongly convex in CG directions
- Stop if the residual $\left\|H_{k} s+g_{k}\right\|$ is small enough or $\|s\|=\Delta_{k}$.
- If $H_{k} \succeq \gamma I$, CG reaches a small residual in at most $\min \left(n, \tilde{\mathcal{O}}\left(\gamma^{-1 / 2}\right)\right)$ matrix-vector products (?).
- When $H_{k} \nsucceq 0$, if curvature below γ is encountered in H_{k}, take a negative curvature step such that $\left\|s_{k}\right\|=\Delta_{k}$.
- If $\lambda_{\min }\left(H_{k}\right) \leq-\beta$, the Lanczos method finds a direction of curvature $-\beta$ in at $\operatorname{most} \min \left(n, \tilde{\mathcal{O}}\left(\ln (n / p) \beta^{-1 / 2}\right)\right)$ matrix-vector products with probability p (?).
\Longrightarrow similar complexity guarantees which count the number of matrix-vector products

Conclusion

Main points:

- Landscape-aware second-order optimization algorithm for strict saddle functions
- The worst-case complexity depends on the landscape parameters $(\alpha, \beta, \gamma, \delta)$ instead of the problem accuracy ε
- Quadratic local convergence of second-order method.
- Estimation of the landscape parameters, see (?)

Questions

Thank you!

Bibliography

References

Nicolas Boumal. An Introduction to Optimization on Smooth Manifolds. Cambridge University Press, 2023. doi: $10.1017 / 9781009166164$.

