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Problem (P)

min - f(z) (P)

where f: M — R is smooth and nonconvex.



How many iterations of an optimization algorithm are required in the
worst-case to reach an approximate solution of (P) from an arbitrary
initial xg € M ?




How many iterations of an optimization algorithm are required in the
worst-case to reach an approximate solution of (P) from an arbitrary
initial xg € M ?

Answer We answer this question for strict saddle functions with a

Riemannian trust-region algorithm (exact and inexact versions).




Background: Complexity

without the strict saddle
assumption



Optimization on Manifolds

Minimize f: M — R where the feasible set M is a Riemannian
manifold.

T,
< . R grad \, f(z)

M

Df(x)[A] = (gradf(z), A) with grad,f(z) € T, M and
D2f(z)[A, A] = (Hesspq f(2)[A], A) with Hessf(x): T, M — T M.

e Produces feasible sequence of iterates xg,z1, 29+ € M

e Requires zg € M and retraction map R,: T, M — M



Optimality conditions for Riemannian optimization algo-

rithms

First-order critical points
reM and grad ., f(z) =0,
Second-order critical points
xreM, grad . f(z) =0, and Hessp f(z) = 0.
Their approximate version:

reM, |grady f(z)]] <e;, and  Hesspf(z) = —eold.



Quick example: Complexity of gradient descent

Gradient descent satisfies
(@) = f(zrsr) > ¢ ||gradf(zy)||* for all k > 0.

As long as the algorithm has not converged ||gradf(xy)|| > e,



Complexity of Riemannian algorithms

?7: Worst-case rates of optimization algorithms on manifolds are
identical to the unconstrained case with respect to .

e Riemannian gradient descent produces a point x € M that
satisfies ||grad ,f(z)| < &1 in at most O(e]?) iterations

e Second-order Riemannian trust-region produces a point x € M
that satisfies ||grad \,f(z)|| < &1 and Hesspq f(z) = —e2Id in at
most O (max (5{27 553)) iterations.



Riemannian trust-region (RTR)

Algorithm 1 Riemannian trust-region (RTR)
1: Given: Tolerance £, > 0, xy € M, trust-region radius Ag > 0, A > 0, constants 0 < 7 <
Ne<land0<7 <1<
2: for k=1,2,... do
3: Find step s, € Ty, M which minimizes (approximately)

mg(s) = f(zg) + (s, grad f(zy)) + % (s, H(s)) subjet to ||s|| < Ag. (4.5)

T ifp<m
Ry (s) ifm<p

f(@g) = f o Ray (sk)

4: Compute p = e (0) = 7 (5%)

and apply z41 = {

o

1Ak if p<m [unsuccessful]
Apr1 = Ay ifm<p<n [successful] (4.6)
EYAV if p>m [very successful]

6: k«—k+1
7. end for

o g = gradf(zy) and Hy = V2(f o R,,) = Hessf(zx)
(second-order accurate model and second-order retraction)
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e We adapt this algorithm to strict saddle functions



Part 2: Complexity with the
strict saddle assumption



Saddle points make life difficult

Definition
If grad f(z) = 0 but € M is not a local minimum, then z is a saddle

point.

o If Ain (V2f(2)) <0, then
I Do s . x is a strict saddle point

-4 -3 -2 -

e Strict saddle points can
o provably be escaped by
> algorithms!

Figure 1: Saddle point with
V2 f(z)=0
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Strict saddle functions on manifolds

Definition (Robust strict saddle functions on manifolds)
There exists positive constants «, 3,7, d such that, at any

point x € M, at least one of the following holds:
1. [lgradf(z)|| > « (large gradient);
2. Amin(Hessf(x)) < —f (negative curvature of the Hessian);

3. there exists a local minimum x* such that x belongs to
the set S = {y € M: dist(z*,y) < 26} which is
geodesically convex, with A\, (Hessf(y)) > v at every
y € S (local geodesic strong convexity).

Strict saddle functions appear in many problems of interest! (a.k.a.

benign non-convexity)

11



Examples of strict saddle problems

Phase Retrieval: Recover x € C" from b = |Ax| € R™ for some
A: C" — C™ with m > 4n. A natural formulation is

m

. 1 *x |12 2\2
— —b
min — ;; (lakz]" — b%)

which is a (e, c/(n log m), ¢, ¢/(nlogm)) strict saddle function for

some constant c

il
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Examples of strict saddle problems

Strict saddle properties have been investigated in many other
applications, such as:

e Rayley quotient for eigenvalues (?)

e Burer-Monteiro Decomposition (?77?)

Neural networks (?7)

Dictionary Learning (?7)
e Matrix completion (77)

e For more, see https://sunju.org/research/nonconvex/
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https://sunju.org/research/nonconvex/

Our landscape-aware algorithm for strict saddle functions

Take a step that is appropriate for the local landscape

L. If [|grad f(z)[| > a, take gradient step
2. If Apin (Hessf(z)) = —p1d, take negative curvature step
3. If Hessf(x) = v1d, take (regularized) Newton step.

We embed these 3 steps in a single trust-region method

14



Algorithm 2 Exact strict saddle RTR algorithm

1: Given: Tolerance €, > 0, Constants a, 3 of the strict saddle function, xy € M, trust-region

radius Ag >0, A >0, constants 0 <71 <79 <1land 0 <71 <1 < 7o.

2: for k=1,2,... do

3 if |lgradf(zx)| > o then
4 Compute the Cauchy point: sz = argmin,er, aq (s, gk) subjet to [|s|| = A.
5: else if A\ (Hessf(zr)) < —3 then
6 Compute s, as the eigenstep, satisfying
Iskll = A, (Sky gk) <0 and (s, Hise) < =B |lsell®
T else bHy = v1d
8 Compute s, as the exact solution to
1
min f(zx) + (s, grad f(zx)) + 5 (s, Hrs) subjet to ||s|| < Ag.
€Ty, M 2
9: end if
— R if p <
10: Compute p = M and apply o1 = Tk 1 p=m
mi(0) — i (s1) Ro(se) ifm<p
11:
EEVAVS if p<m [unsuccessful]
Api1 = Ay ifm <p<ne [successful]
oAy if p>my  [very successful]
12: k+Fk+1
13: end for
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Complexity of Riemannian trust-region for strict saddle

Theorem [G. and Royer|

Let f: M — R be a (a,f,7,0)-strict saddle function on the
manifold M. If the pullback foR is twice Lipschitz continuously
differentiable and R second-order, for any xzog € M the strict
saddle Riemannian trust-region algorithm finds a point z € M
such that ||gradf(x)|| < e and Hessf(z) = 7Id in at most

O (max(a 287!, a™2y71, 873,473 472571 + loglog (v/e))

iterations.
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iterations.

e Complexity is with respect to strict saddle parameters and no
longer depends on & (up to log-log factor)

e Similar result in (?) for a first-order algorithm, we improve the
complexity in the local phase
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Ingredients of the proofs

e Cauchy step: f(zx) — f(2ry1) > O(a?)
— follows from (Boumal, 2023) and ||gradf(zs)|| > «

e Eigenstep: f(ox) — f(ans1) = O(8?)
— follows from (Boumal, 2023) and Apin (Hessf(zx)) < —8
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Ingredients of the proofs

e Cauchy step: f(zx) — f(zrs1) > O(0?)
— follows from (Boumal, 2023) and ||gradf(zx)| > «
e Eigenstep: f(z) — f(wk1) = O(8%)
— follows from (Boumal, 2023) and Apin (Hessf(zx)) < —8
e Convex model step: f(zx) — f(zrs1) > O(F?)
— Adaptation of (?) to manifolds
e Local phase: quadratic convergence in loglog steps
— quantifying when the local phase becomes a pure Newton
method (g-convexity + ideas from Cartis and Shek) with
quadratic convergence ||gradf(zrs1)| < ¢ ||lgradf(zx)||* (2)
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Complexity mimics convex optimization

Strict saddle RTR:

O (max(a™2871, a2y, 83,773,/ ~2071) + loglog (7/2)) .

(?) For f: R™ — R that is v-strongly convex over R™ and Lip-
schitz Hessian, the Newton method with Armijo backtracking

requires at most

O (v7® +1loglog (¢71))

iterations to find a point such that ||V f(z)| <e
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The Steihaug-Toint approach: truncated CG

We don’t want to compute Apin (H) at every iteration to branch
between cases 2 and 3:
— Approximate solutions of the trust-region subproblem
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The Steihaug-Toint approach: truncated CG

We don’t want to compute Ayin (Hj) at every iteration to branch
between cases 2 and 3:
— Approximate solutions of the trust-region subproblem

e Apply conjugate gradient (CG) to the linear system Hys = —gi
as long as Hj appears y-strongly convex in CG directions

e Stop if the residual ||Hgs + gx|| is small enough or [|s|| = A.

o If H; = vI, CG reaches a small residual in at most
min(n, O(y~/2)) matrix-vector products (?).

e When Hj, # 0, if curvature below ~ is encountered in Hy, take a
negative curvature step such that ||sg| = Ag.

o If \in(Hy) < —f, the Lanczos method finds a direction of
curvature — 3 in at most min(n, O(In(n/p)F~/?)) matrix-vector
products with probability p (7).

— similar complexity guarantees which count the number of
matrix-vector products
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Conclusion

Main points:
e Landscape-aware second-order optimization algorithm for strict
saddle functions

e The worst-case complexity depends on the landscape parameters
(a, B,7,0) instead of the problem accuracy e

e Quadratic local convergence of second-order method.

e Estimation of the landscape parameters, see (?)
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Thank you !
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