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Abstract

We consider the point cloud registration problem, the task of finding a transformation
between two point clouds that represent the same object but are expressed in different co-
ordinate systems. Our approach is not based on a point-to-point correspondence, matching
every point in the source point cloud to a point in the target point cloud. Instead, we
assume and leverage a low-dimensional nonlinear geometric structure of the data. Firstly,
we approximate each point cloud by an algebraic variety (a set defined by finitely many
polynomial equations). This is done by solving an optimization problem on the Grassmann
manifold, using a connection between algebraic varieties and polynomial bases. Secondly,
we solve an optimization problem on the orthogonal group to find the transformation (ro-
tation + translation) which makes the two algebraic varieties overlap. We use second-order
Riemannian optimization methods for the solution of both steps. Numerical experiments on
real and synthetic data are provided, with encouraging results. Our approach is particularly
useful when the two point clouds describe different parts of an objects (which may not even
be overlapping), on the condition that the surface of the object may be well approximated
by a set of polynomial equations. The first procedure—the approximation—is of indepen-
dent interest, as it can be used for denoising data that belongs to an algebraic variety. We
provide statistical guarantees for the estimation error of the denoising using Stein’s unbiased
estimator.
keywords: point cloud registration, Riemannian optimization, algebraic varieties.

1 Introduction

The problem of point cloud registration consists in finding a transformation between two point
clouds that represent the same shape but are expressed in different coordinate systems. It
appears for instance in computer vision (Sharp et al., 2004), distributed approaches to molecu-
lar conformation (Cucuringu et al., 2012b), and sensor network localization (Cucuringu et al.,
2012a). In this work, we consider instances where the shape of the point clouds can be repre-
sented by an algebraic variety (a set defined by finitely many polynomial equations). We develop
a registration method based on manifold optimization which exploits the algebraic variety struc-
ture of the data.
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Consider two algebraic varieties Vi,Va C R™ of the same degree d (Definition 2.1). We
assume the existence of a rigid transformation 7 : R — R" that makes the varieties V7 and V5
overlap.

A1l. There exists Q € O(n) and a € R™ such that for all x; € V1, we have
T(azl) = Qx1 +a € Vs, (1.1)

where O(n) = {Q ER™™.QTQ = In} denotes the orthogonal group.

Intuitively, V; and V5 represent the same shape but in different coordinate systems, which
are connected by a rotation and translation.

A matrix X € R™*¢ represents a point cloud in R™ and each column of X is called a data
point or sample. Let My € Rt and My € R"*%2 be composed of respectively s; samples in V;
and s samples in V5. Given M; and Mj, our task is to estimate @ € O(n) and a € R™ which
define the transformation 7. The samples of M; € R"**1 and M, € R™*%2 are independent and
the two point clouds may have a different number of samples (s; # s2). The goal is therefore
not to establish a point-to-point matching, but to find a transformation such that the varieties
V1 and Vo — observed through the samples in M7 and My — overlap as best as possible.

The situation described in Al is a noiseless setting, in which all the columns of M; belong
exactly to the same algebraic variety. This is not likely to occur in practice, instead we expect
that the data approximately belongs to an algebraic variety. It is this noisy setting that we
consider. Our strategy is to first tackle the problem of finding the algebraic variety that best
approximates a point cloud. We do so in Section 3. Each point cloud is approximated by
an algebraic variety, and then we compute a rigid transformation between these two algebraic
varieties (Section 4).

We model each of these two recovery problems (approximation by an algebraic variety and
registration) as the minimization of a function defined on a combination of the following sets:
the orthogonal group, the Grassmann manifold, and the Euclidean spaces R™*¢ and R™. These
optimization problems are instances of the problem class

min f(z) (1.2)
where f: M — R is a smooth nonconvex function defined on a Riemannian manifold M.
Hence, all the optimization problems that we formulate can be minimized using off-the-shelf
Riemannian optimization methods (Absil et al., 2008; Boumal, 2023), which are designed for
problems of the form (1.2). When the problems are nonconvex, there are no a priori guarantees
to find the global minimizer of f on M, and our numerical results show that local Riemannian
optimization methods perform well on our test problems in Sections 3.3 and 4.2. We present a
summary of the main existing approaches for registration in order to highlight the novelties in
our contribution.



1.1 Related work

Several approaches have been devised for the various types of registration problems that appear
in image and pattern analysis. Registration algorithms are classified into rigid and non-rigid ap-
proaches. Rigid registration methods find affine transformations—rotations and translations—
that preserve distances. The non-rigid registration methods also consider nonlinear transforma-
tions.

One of the early instances of registration in the literature is the (orthogonal) Procruste
problem (Schénemann, 1966). Given two matrices A, B € R™**, one tries to find the orthogonal
matrix @* € O(n) that best matches A to B in Frobenius norm, that is,

Q" = argmin |QA — By
QeO0(n)

This problem is equivalent to finding the nearest orthogonal matrix to BAT,

Q" = arg min ‘Q - BATH ,
Q€O(n) F
which, given the singular value decomposition BAT = UXV " is Q* =UVT.

A natural extension is to consider a transformation which combines an orthogonal matrix
with a translation. Consider two point clouds My = {z1,...,zs} and My = {y1,...,ys} in
R™, respectively called the source and the target point clouds. One is obtained through a rigid
transformation of the other:

yr = Qxr +a fork=1,...,s, (1.3)

where @ € O(n) is a rotation and a € R™ is a translation. In this setting, ezact point matching is
assumed: the two point clouds have the same number of samples and each sample matches with
one and only one sample from the other point cloud. This leads to the following least squares
problem

(Q"a") = argmin Y lyr — Quy, —al3. (1.4)

QeO(n),acR™ =1

The optimization over O(n) x R"™ seems difficult since the set O(n) is nonconvex. Remarkably,
there exists a closed-form solution for the global minimizer of (1.4). Arun et al. (1987) show
that the optimal orthogonal matrix is given by Q* = UV T where UXV T is the SVD of

s

Z(-xk - xc)(yk - yc)T7

k=1

with . = (z1 + -+ + z5)/s and y. = (y1 + -+ - + ys)/s, the centroids of the two point clouds.
The optimal translation is a* = y. — Q*x.. In the case of three or more point clouds to align,
no closed-form solution is known. Krishnan et al. (2005) consider the case of multiple point
clouds using a rigid transformation and exact point matching. They propose to solve a single
optimization problem with one variable on SO(n) = {Q € R"*" : QRTQ =1,,det(Q) = +1} for
each point cloud. Chaudhury et al. (2015) also consider an arbitrary number of point clouds
and show how the least square formulation, which generalizes (1.4) to several point clouds, can
be relaxed into a convex program, with guarantees of tightness.

These approaches, as well as the Procruste problem, require knowledge of the point corre-
spondence: which point from the target corresponds to a given point in the source point cloud.



This is unknown in a number of applications. For problems with exact point matching, the crux
of the problem then resides in finding the correct point correspondence. The registration is then
solved using a single SVD to find the global solution of (1.4).

The iterative closest point (ICP) algorithm, introduced by Besl and McKay (1992), addresses
the issue of the unknown point correspondence. Assuming exact point matching, the ICP algo-
rithm performs rigid registration in an iterative fashion. The method repeats the following two
steps until the least squares error becomes smaller than some threshold:

1. find a point correspondence using the nearest neighbour rule;

2. estimate a rotation and translation by solving (1.4) using SVD.

In the original version of ICP, the matching in step 1 is determined by the nearest neighbour
criteria. For a point in My, its corresponding point is the closest point from Ms in Euclidean
norm. Note that this may not produce a one-to-one matching. Because the point correspondence
changes throughout the iterations, it is difficult to establish theoretical guarantees of convergence
for the classical ICP algorithm. The use of the least squares residual (1.4) yields a method
referred to as point-to-point ICP and is known to be sensitive to noise and outliers (Bellekens
et al., 2014).

M; (source)

L3

M (target)

Y1
Figure 1: Point-to-point ICP.

Numerous adaptations of the original ICP algorithm have been proposed, impacting all stages
of the algorithm.

The point-to-plane ICP (also called point-to-surface) is one such adaptation (Chen and
Medioni, 1992). To reduce the algorithm’s sensitivity to noise, step 2 minimizes the distance
between a source point and the linear approximation of the point cloud at its target point
(Figure 2). This gives

source

Figure 2: Point-to-plane ICP (Bellekens et al., 2014).

S

(Q*,a") = argmin Y |(y — Qug — a,ng) %, (1.5)
QeO(n),acR™ =1



where 3y, is the corresponding point to x; and ny is the normal vector to the linear approximation
of the point cloud at y;. This point-to-plane error metric does not have a closed-form solution
and is minimized using nonlinear least squares methods. Although each iteration of the point-
to-plane ICP is typically slower than an iteration of the point-to-point ICP, the former displays a
faster convergence rate in practice (Rusinkiewicz and Levoy, 2001), as is predicted by theoretical
analysis (Pottmann et al., 2004). Plane-to-plane error metrics have also been proposed, which
minimize the distance between the two tangent approximations around corresponding points.
Generalized ICP allows to leverage the covariance matrix of the point clouds (Segal et al., 2009).
Variants of ICP are summarized in (Rusinkiewicz and Levoy, 2001).

In the non-rigid registration paradigm, the transformation is no longer restricted to the
combination of a rotation and a translation. There exists a wide range of approaches for the
non-rigid registration which we do not cover in depth. Some of the popular approaches for
non-rigid registration include robust point matching (Gold et al., 1998); thin plate spline robust
point matching (Chui and Rangarajan, 2003); kernel correlation approach (Tsin and Kanade,
2004) and coherent point drift (Myronenko and Song, 2010).

The idea of learning the equations that define an algebraic variety also appears in (Breiding
et al., 2018), where the authors investigate topological properties of the algebraic variety based
on samples. Fan and Chow (2018) consider the denoising of images using the polynomial kernel.

1.2 Contributions and outline of the paper

We attempt to find a rigid transformation between two point clouds and assume that the target
and source point clouds belong to the same algebraic variety (up to a change in coordinates).
Our method does not assume that a point correspondence is given, nor does it attempt to
compute one. This avoids the convergence issues that stem from the iterative estimation of a
point correspondence. The transformation that we compute aims that the image of the source
by the rigid transformation belongs to the algebraic variety of the target point cloud. This
conceptually aligns the algebraic varieties of the source and target point clouds.

In order to reduce the sensitivity to noise and outliers, variants of the ICP algorithm minimize
a point-to-plane or plane-to-plane metric using local linear approximations of the point clouds.
The approach we consider can be labelled as a point-to-algebraic variety matching, which does
not minimize a distance between pairs of points or planes. Our residual is computed in a space
of polynomial features, and measures the distance between a source point and the algebraic
variety that defines the target point cloud. This also allows us to seamlessly consider two point
clouds of different sizes and handle cases where the source point cloud only overlaps partially
with the target point cloud, which is an issue for point-to-point methods.

In Section 2, we describe the connection between algebraic varieties and polynomial bases,
which allow us to computationally represent algebraic varieties. For noisy data that does not
belong to an algebraic variety, we have developed a technique to identify an approximation of
each point cloud by an algebraic variety (Section 3). This is then used to compute the rigid
transformation (Section 4). We show numerical results on synthetic examples and 3D medical
scans that illustrate the efficiency and accuracy of our approach.

2 Preliminaries: algebraic varieties and polynomial features

We describe how points that belong to an algebraic variety interact with a polynomial basis. An
algebraic variety is a subset of R™ defined by finitely many polynomial equations.

Definition 2.1 (Algebraic variety model (Cox et al., 1994)). Let Ry[z] be the set of real-valued
polynomials of degree at most d over R™. A real (affine) algebraic variety of degree d is defined



as the roots of a system of polynomials P C Ry[z]:

V(P)={x € R": p(x) =0 for all p € P}.

We say that the matrix X = [931 Tg - l‘s] € R™* follows an algebraic variety model if
every column of X belongs to the same algebraic variety, i.e., x; € V(P) for alli=1,...,s.
Let Y
N= <n§d> - (nd?_n!).’ 21
be the dimension of Ry[z] and consider polynomials cp((il), cees (p((iN) that form a basis of Ry[z].

We define the polynomial features as

w0q: R = RY: p4(x) = (2.2)

oV ()

For X € R™** we obtain the matrix of polynomial features ®,;(X) by applying ¢4 to each
column of X,

q(X) = [pa(z1) - @alxs)] € RV*.

Let the algebraic variety V(P) C R™ be defined by a set of ¢ linearly independent polynomials
P ={p1,...,pq}, where each polynomial p; is at most of degree d. Consider the features ®4(X)
of a matrix X € R™% whose columns z1,...,zs belong to V(P) and assume the following:

A2. The dimensions of the matriz X € R"™** satisfy s > N — q.

Under A2, we have
zieV(P)foralli=1,... s if and only if Dy(X)'U =0, (2.3)

where the ¢ columns of U € RNX4 contain the coefficients of the polynomials p1, .. ., pq in the
basis @g. In this way, we view any matrix U € RV*9 as representing ¢ polynomials in the basis
4. The zero set of these polynomials is an algebraic variety, and hence we associate the matrix
U € RVX4 with that algebraic variety.

This algebraic variety is only a function of U through range(U). Take Uy € R¥*4 such
that range(Us) = range(U) (there exists W € R%*7 such that Uy = UW). From (2.3), the
algebraic variety defined by Us is also V(P). Thus, the algebraic variety V(P) depends on
the g-dimensional subspace U := range(U) C RY but does not depend on the specific matrix
U chosen as a basis for that subspace. Hence, it makes sense to use the notation Vi, for the
algebraic variety V (P).

The space of all g-dimensional subspaces in RY is called the Grassmann manifold—written
Grass(N, ¢)— and is a smooth Riemannian manifold. Any U € Grass(N, q) therefore defines a
unique algebraic variety. A point U € Grass(lV,q) is represented on a computer by a matrix
U € RN¥*4 such that range(U) = U.



3 Approximation by an algebraic variety (denoising)

Consider a point cloud M € R™*% and its corrupted version
M=M +w, (3.1)

where the columns of M belong to an algebraic variety V(P) (Definition 2.1) and the noise
w € R™* has small Frobenius norm compared to M: ||w|s < |[M||y. The goal of denoising is
to recover M from M as accurately as possible, without knowing the polynomials that define
V(P) (Figure 3). The distribution of the noisy perturbation w may be unknown. In computing
M, we want to find the algebraic variety that best approximates the point cloud M. The noise
w may be interpreted as the model mismatch between the raw data (e.g medical scans) and an
algebraic variety.

Figure 3: Denoising of an algebraic variety

3.1 Formulation as an optimization problem

We start with an estimate of g, the number of linearly independent polynomials that define the al-
gebraic variety V(P). In order to estimate V(P), we use that every subspace U € Grass(N, q) de-
fines an algebraic variety V;;. From (2.3), the subspace which defines the algebraic variety V(P)
belongs to the null space of ®(M)". It follows from simple linear algebra that null (®(M)") =
(range ®(M))*. So we aim to find a subspace orthogonal to range ®(M), that is, a subspace U
such that Py ®4(M) = 0, where P,y = UUT € RV*N denotes the orthogonal projection on the
subspace U with range(U) =U and UTU =1Iy. Let {p1,...,p,} be the polynomials that define
the algebraic variety V4, whose coeflicients are given by U = [ul Uy - uq] € RNV*4 in the
basis 4. For X € R"*¢ it follows

9 s q S q
2 T T 2 2
[Pua(X) 2 = [UT@aX)| = 3D () Tpa@)? = 32D pia)® (32)
i=1 j=1 i=1 j=1
We minimize (3.2) under the constraint that the variable X is not “far away” from the noisy
input M. Given some 1 > 0, an estimate of the noise level, we
112
minimize ||Py®q(X)]|? subject to HX — MH <n. 3.3
minimize [Py (X))} j <n o (33)
XeR”LXS
In (3.3), the cost function is nonconvex but smooth. It expresses the least square error of the
polynomial system that defines the algebraic variety Vi, calculated for every column of X. The
above formulation can be made unconstrained in the variable X; for some A > 0,

~ 112
imimize |[Py@a(X)|If + A |[X 3| 3.4
urélé?;gl(lj\zfz)” u®a(X)|l% F (34)
XeRnXS



It can be shown that there exists a A > 0 such that (3.3) and (3.4) are equivalent. Through the
lens of Riemannian optimization, Problem (3.4) can be viewed as the unconstrained minimization
of a function defined on the manifold M = RV*$ x Grass(N, ¢). This general framework allows
to use off-the-shelf Riemannian optimization methods (Boumal, 2023).

Problem (3.4) is nonconvex but there are good initial guesses for the variables X and U,
which are respectively M and the last ¢ (left) singular vectors of ®4(M). In Section 3.3, we
observe numerically that solving (3.4) with second-order Riemannian optimization methods is
robust and appears to find the global minimum despite the nonconvexity. In order to solve (3.4),
we do not assume knowledge of the noise level 7. To find a suitable value for the regularization
parameter )\, the problem is first solved with A = 107% (a small value) and then solved again
several times with increasing values of A. Each problem is initialized with the solution of the
previous solve (warm starting). This process is stopped when a good trade-off between the

values of ||Py®4(X)|p and HX - ]\2[‘ .

When the residual vanishes, the points belong exactly to an algebraic variety. Equation (2.3)
implies that

is reached.

|Pu®a(X)|lg =0 if and only if x; € Vyforalli=1,... s (3.5)

where z1,...,xs denote the columns of X € R™ . In that case, the last ¢ singular values of
®4(X) are zero and Vj, is defined by the subspace corresponding to the last ¢ singular vectors
®,4(X), which may be computed by a singular value decomposition. Recovering the algebraic
variety of the data—despite the presence of noise—is the first part of the registration process in
Section 4, where we estimate a transformation such that two algebraic varieties overlap.

An important practical concern is to estimate ¢, the number of linearly independent polyno-
mials which define the algebraic variety. For hypersurfaces of dimension n — 1, one polynomial
equation defines the surface and ¢ = 1. In the section on numerical results 3.3, we discuss
the choice of a suitable degree d for the model. The next section provides an estimate of the
accuracy of the recovery in the case of Gaussian noise, which gives an estimate of the error at a
solution which is obtained for a given degree.

3.2 Statistical error estimation

In this section, we use Stein’s unbiased risk estimate (Stein, 1981) to give guarantees on the
error of our denoising procedure. Assume that the noise perturbation w in (3.1) follows a
normal distribution. That is, for some o > 0, we have w;; ~ N(0,0?) for every entry (i, j) of w.

For a given M, let <X*( ), U*(M )) be an isolated local minimizer of (3.4). We view X*(M)
as an estimator of M which depends on the random variable w. The expected error is defined

~ 112
as R =E [HM — X*(M)HF} . Based on (Stein, 1981), we have

|

*(M)H —nso —1—20222 8)(;\41] ) (3.6)

=1 j=1

as an unbiased estimate for R, i.e. E(R) = R. The estimate R is called Stein’s unbiased risk
estimate (SURE). The quantity Y 7, >>%_, 0X/;(M)/0M;; is known as the divergence of the
estimator X *(M ) and describes the sensitivity of the solution to the input data. It measures

the complexity of the model, that is, its tendency to overfit the data (Ghojogh and Crowley,
2019, Eq. 33).



We propose to use SURE as an alternative to cross validation to evaluate the estimation
error and detect the possibility of overfitting. For polynomials of degree 2, which we use in the
numerical examples, the model is simple and the likelihood of overfitting is small. Estimating
the generalization error with formula (3.6) is most useful for several values of model parameters
like the degree d.

To compute the divergence in the context of Problem (3.4), we use a version of the implicit
function theorem for functions defined on manifolds. For a smooth map F': M; x Mgy — Mg,
we write D1 F' and Do F for the differential of F' (Boumal, 2023, Definition 3.34), with respect
to its first and second argument, respectively.

Theorem 3.1 ((Abraham et al., 2012), Prop. 3.3.13). Let My, Mo, M3 be manifolds. Let
F: M; x Mg — M3 be smooth and let (zg,y0) € M1 x Ma with F(xo,y0) = 0. If Do F(x0,y0)
is 1nwvertible, there exists open neighbourhoods Vi of xg in My and Vo of yg in Mas, and a smooth
function g : Vi — Va such that for all x € Vi, F(x,g(x)) = 0. In addition,

Dyg(z0) = — (D2F (20, %0)) ' D1F (20,30).
Recall that the root mean square error (RMSE) is defined by
RMSE = | M — X*|y /v/ns. (3.7)

Proposition 3.2. Let the noise w ~ N(0,02) for some given o > 0 and let f(X,U; M) denote
the cost function of (3.4). Consider (X*(M),U*(M)), an isolated local minimizer of f for a

given M. Stein’s Unbiased risk estimate of the RMSE is given by

SURE := \/R/ns (3.8)

where R is computed as in (3.6) with

XD __[vysxu ) (VxS (T, 6015 01)) (3.9)

oM

where

]\8/[ (VXf(M,g(M);M)> = —2)\A;;

)

and A;; € R™™* is zero except for entry (i,7) equal to 1.

Proof. For clarity, we write (X*,U*) for <X*(M),L{*(M)) Recalling that M = R™% x
Grass(N, q), we define F': R™% x M — TM by

F(M,X,Z/I) :grade(X,u;M) — [ VXf(X»UQM) } '

K 3.10
graduf(X,Z/{; M) ( )
where Vx f(X,U,; M) € R™*¢ is the Euclidean gradient of f with respect to X € R™** and
grady, f(X,U; M) € TyGrass(N,q) is the Riemannian gradient which belongs to the tangent
space of Grass(NN, q) at U. First-order necessary optimality conditions for Problem (3.4) can be
stated as

F(M,X,U)=0.



We apply Theorem 3.1 to the function F', with the identification of the variables M e M; = R"s
and z = (X,U) € My = M = R" x Grass(N,q). The theorem applies to derivatives as
abstract objects defined by tangent vectors. In particular, affine connections (Boumal, 2023,
Definition 5.1)—including the Riemannian connection—satisfy the axioms of derivatives. When
applying this theorem to the function F', we view the derivative of a vector field as the covariant
derivative associated to the Riemannian connection. Therefore, the derivative of the map F
with respect to its second variable z € M, is given by the Riemannian Hessian of f, that is,
Dy F (M, X,U) = Hessp f(X,U; M). Therefore, if Hessyq f(X*,U*; M) is invertible, there exists
an open set V; € R™ and a map g: V; — M such that g(M) = (X*,U*) and F (M, g(M)) = 0.
Also,

OF (M, g(M))
oM

oM OM

dg(M) d ((X*(M),u*(M)) _ [Hesst(X*,u*;M)}i

] . (3.11)

If (X*,U*) is an isolated minimizer of (3.4), the matrix Hessf(X™,U*) is positive definite and
therefore invertible. In order to compute F(M,g(M))/OM, we see from the definition of
f(X,U; M) in (3.4) that grad,, f(X,U; M) does not depend on M and that Vy f(M, g(M); M)
depends on M through the term 2A(X — M). Thus, we have

- ((rad (O, (3115 30)) = 0 (3.12)

and 5
— (Vx (M, g(AD); 31) ) = =200

v

with where A;; € R"** has entry ij equal to one and the other entries are zero. Using (3.12),
the upper block of (3.11) reads

OX*(M) ) R S
i [VXXf(XauvM)} PY; (VXf(M,Q(M)vM» :
This gives (3.9). Equation (3.8) follows from (3.6) and the definition of the RMSE. O

3.3 Numerical results for denoising of algebraic varieties

In this section, we numerically evaluate the performance of our denoising method. Our code
for the denoising of algebraic varieties can be found online at https://github.com/flgoyens/
variety-denoising, currently with implementations in Matlab and Python. We use the Manopt (Boumal
et al., 2014) and Pymanopt (Townsend et al., 2016) toolboxes for the Matlab and Python versions
of the code, respectively.

The Riemannian trust-region solver (Boumal, 2023, Algorithm 6.3) in the toolbox is our
algorithm of choice; it is applied to Problem (3.4) with default parameters. The trust-region
algorithm underlying this solver has been shown to have fast local rate of convergence (at least
superlinear, near a non-degenerate minimizer (Absil et al., 2007)). Furthermore, under suitable
global smoothness assumptions, this algorithm is guaranteed to converge to a first- or second-
order critical point of the problem from an arbitrary initial guess (Boumal et al., 2019), with a
rate that can be quantified as follows: for a given accuracy parameter ¢, it takes at most O(e~?)
to generate an e-approximate first-order critical point, while an e-approximate second-order
critical point is found within most O(e~3) iterations.
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The numerical examples in this section were generated using the Matlab version of our code,
with the termination condition that the norm of the gradient in (3.4) becomes smaller than
1075, For an output of the algorithm (X*,U*), we define

RESIDUAL = [Py ®g(X*)|[%

which is interpreted using (3.2) as the least squares error of the system of polynomial equations
that define the algebraic variety Vis«. The RESIDUAL tells us how close the columns of X* are
to some algebraic variety. The RMSE tells us how close X* is to the original matrix M (3.7).
We begin with randomly generated examples. We use a monomial basis of degree d = 2 for the
feature map @q.

Synthetic examples

Example 1: Denoising a circle We generate a point cloud M € R2¥150 46 4 noisy corruption
of a set of points on the unit circle using ¢ = {1073,1072,1071,2-107!} for the standard
deviation of the Gaussian noise (M in red in Figure 4). We notice that the solution X* (blue)
reached by the optimization algorithm is close to the original circle even for a visually large noise.
For 0 = 1072 and 0 = 2-107!, the RESIDUAL reaches values of 10~ and 107?, respectively.
The solver’s output X* is therefore very well approximated by an algebraic variety. This example
also makes it clear that the approach is more general than a classical polynomial approximation,
as the approximation does not need to be the image of a polynomial function. Table 1 reports
the RMSE (3.7) and SURE estimate of the RMSE (3.8). SURE accurately predicts the RMSE
and that the RMSE increases proportionally with the standard deviation of the noise.

Noise o 1073 102 101 2.10°1
SURE | 5.49-107* | 6.76-1072 | 5.69-102 | 1.22-1071
RMSE | 6.77-107% | 8.53-1072 | 7.52-1072 | 1.44-107!

Table 1: SURE (3.8) and RMSE (3.7) for denoising of a circle

Example 2: Denoising a union of two subspaces In Figure 5, we denoise a point cloud
which is near the union of two subspaces with o = {1073,1072,1071} for the standard deviation
of the noise. This shows that the algebraic variety doesn’t need to be a smooth set. It is an
algebraic variety described by polynomial equations of degree 2, hence using polynomials of
degree 2 is sufficient. (The union of k& subspaces is an algebraic variety described by polynomial
equations of degree k.) For o = 1072, the output satisfies RESIDUAL = 3-10~'0. Table 2
reports the RMSE and the SURE estimate of the RMSE.

Noise o 1073 10~2 107!
SURE | 7.05-107% | 6.32-1072 | 7.04-1072
RMSE | 7.10-107% | 6.98-1073 | 7.37-102

Table 2: SURE for denoising of a union of subspaces

Dental Tomography Scans

Our research was originally motivated by an industrial partnership with the National Physical
Laboratory (NPL), which concerned 3D dental scans (X-ray computed tomography scans). Each
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Figure 5: Denoising a nonsmooth algebraic variety.
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scan contains several millions of data points. It is desirable to remove the noise and outliers
before they can be processed. Figure 6 shows an example of the dental scans available. After
random subsampling—which helps visualization—it is composed of 2048 data points in R3.

Figure 6: Tomographic dental scans (subsampled)

For data sets such as dental scans, it may not be obvious which degree of the feature map will
yield the best result. In theory, increasing the degree should give a model with more degrees of
freedom and a better fit. Unfortunately, the dimension of the optimization problem N = n?/d!
blows up as d increases, even for moderate values of n. The number of data points necessary
also increases with the degree, since s > N — ¢ is required A2. Additionally, ill-conditioning
may appear when the degree d becomes large, this is especially true for monomial basis because
$4(X) is a multivariate Vandermonde matrix. Previous works using the monomial kernel for
high-rank matrix completion problems restricted themselves to degrees two or three (Ongie et al.,
2017; Fan and Chow, 2018; Goyens et al., 2022). We try values of d going from 1 to 5 and choose
the one that yields the best result, which is usually d = 2 in practice.

Example 3: approximation of a dental scan by an algebraic variety Figure 7 shows
an XCT scan in red and the output of our denoising algorithm in blue. The value RESIDUAL
has been reduced from the order of 1 to the order of 1072 by the algorithm, and X* is therefore
closer to an algebraic variety than M. Since no noise was artificially added, the value of o for
the noise that represents the mismatch between the real dental scan and the algebraic variety
model is unknown. For o = 1072, Stein’s estimation of the RMSE gives SURE = 0.21.

Figure 7: Original point cloud and denoised version
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4 Registration of algebraic varieties

We return to the registration problem presented in the introduction. Consider two matrices
My € R™1 and My € R™*52 that contain data points belonging to two algebraic varieties V}
and V5 that overlap through a rigid transformation (A1l). Assume further that the algebraic
varieties V7, Vo have degree at most d and are described by ¢ linearly independent polynomials,
for some 0 < ¢ < N; and that M; and Ms both satisfy A2, so that min(s1, s2) > N —¢q. We are
given two point clouds M; and MQ, which are approximate versions of M7 and Ms:

My = My 4w,
My = Ms + Ws,

where wy,wy are noisy perturbations, with ||wi|p < [[Mi|p and [|ws||p < ||M2||p. Our goal in
this section is to estimate the rigid transformation 7 : R™ — R"™ which makes V7 and Vs overlap,
or, more precisely, such that 7 (M) belongs to Va.

4.1 Formulation as an optimization problem

To achieve this, we first attempt to recover M7 and My from Ml and Mg, by solving twice the
denoising problem (3.4), as described in Section 3. This yields estimates X7 € R"*® and Xy €
R™*5 along with subspaces U; € Grass(IV,q) and Uy € Grass(N, ¢) which define the algebraic
varieties that X; and X5 (approximately) belong to. Then, we estimate a transformation 7
such that 7(X;) belongs to the algebraic variety defined by Us.

Let xgl),xgl), . ng denote the columns of X; and let pi,...,p, denote the polynomials
that define V4. To find a rotation @ € SO(n) and a vector a € R"™ such that the points

T <$§1)> = Qa{" + a belong to Vi, for all 1 < i < sy, we

51 ¢
e ) (1) 2

minimize ; jz:;p] (Qx; " +a)”. (4.1)

The distinction with the least squares minimization (1.4) appears clearly. We do not minimize

a point-to-point distance; instead, we are fitting points to an algebraic variety and want each

column of X;—after application of the rigid transformation—to satisfy the equations that define

Vit,- Using (3.2), we write (4.1) using the variable Us € Grass(NN, ¢) and the matrix of polynomial
features:

81 q S1
PIPIICELEEEDY

=1 j=1 =1

2
[Pupa(@a” + )| = IIPLu@a(QX1 + alucs,) 1.

where 1145, is a row vector of size s; that is full of ones. This leads to the following two-step
strategy to identify the transformation between Vi and Vs.

Step 1: Algebraic variety identification and denoising

~ 2
argmin  |[Py®y (X)\|§+AHX—M1H
XU F

(X1,Uh) = (4.2)

U € Grass(N, q).

“ 2
argmin  ||Py®, (X)H%—i—)\HX—MgH
XU F

(Xo,Up) := (4.3)

U € Grass(N,q).
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Step 2: Registration

micILl [Py @q (QX1 +a11x51)H12?
(QF,a") = subject to @ € SO(n) (4.4)
a € R™.

For details on solving Step 1, see Section 3. The registration step (4.4) is nonconvex, and
it is also a smooth optimization problem on a manifold that we minimize using Riemannian
optimization (Boumal, 2023, Algorithm 6.3). We initialize the transformation 7 with a random
rotation and random vector a of unit norm. If the transformation 7 includes a reflection as
well as a rotation, the optimization should not be done over SO(n) but the other connected
component of O(n), with matrices of determinant —1.

Remark 4.1. Another possibility would be to compute the registration in a single step, an
optimization problem over the variables (U, Q,a) that concatenates both point clouds. We found
that this is harder to solve in practice. Performing steps 1 and 2 separately is suitable because
we are able to estimate the algebraic variety from the samples of only one of the point clouds.

Remark 4.2. Interestingly, this two-step approach is asymmetric. If one point cloud is included
in the other, the larger point cloud must be used as the target (Msy) and the smaller one as the
source (M ).

4.2 Numerical results for registration

Our code for the registration problem is available in Python at https://github.com/flgoyens/
variety-registration. In the numerical examples that follow, the default implementation of
the Riemannian trust-region algorithm from PyManopt was used where the full Riemannian
Hessian is computed through automatic differentiation (Townsend et al., 2016). This section
illustrates the efficiency of our approach to identify a rigid transformation between two quadratic
curves or surfaces (synthetic test problems), or two dental scans. We use the monomial basis of
degree d = 2 for the feature map ¢y;. We set the dimension ¢ = 1, since the points clouds are
hyper surfaces of dimension n — 1.

For the synthetic examples, we take the samples in M> as randomly generated points that
belong to the quadratic 2 — z2. The samples in M; come from a rotated and translated version
of that curve, for some random rotation and translation that we attempt to recover. We then
add random matrices of Gaussian noise wi, ws ~ N(0, 02), which yields M and M,. The quality
of the solution returned by the solver is assessed by the residual

RESIDUAL = ||Py, @4 (Q* X1 + a*11xs,) |5,

which is interpreted using (4.1) as the residual of the polynomial equations that define an
algebraic variety. We emphasize that the measure ||Q*X1 4+ a*11xs, — XQH% is meaningless. We
are not trying to perform a point-to-point matching, which is even undefined for point clouds of
different sizes. In the figures below, the upper image shows the two point clouds of input, and
the lower image shows the output of the algorithm after registration.

These numerical results illustrate that our approach successfully finds an accurate rigid trans-
formation in these simple cases. Due to the nonconvexity of SO(n) and the random initialisation
of the algorithm, the solver sometimes fails to find the correct transformation and appears to
find a local minimum. We then restart Problem (4.4) with a new initial rotation and translation,
and report that this usually finds the global minimum under five attempts. This is likely helped
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by the fact that registration problems are most often considered in R? or R?, and the dimension
of the search space is small. A better initialization of the transformation would lower the chances
to find a suboptimal local minimizer.

Example 5 In Figure 8, the data is on a quadratic surface in R3 (zero noise added). The
input data has dimensions M; € R3*200 Af, € R3¥290, The result satisfies RESIDUAL ~ 10~ 7.

Figure 8: Registration for a quadratic surface in R3.

Example 6 In Figure 9, the standard deviation of the noise is ¢ = 5- 1072 and the algorithm’s
output satisfies RESIDUAL ~ 10~%. We see that despite the presence of noise in the original
data, the transformation is well estimated to create an overlap.

Example 7 In Figure 10, the magnitude of the noise is increased to o = 10~! and the output
satisfies RESIDUAL = 10~2. The transformation is again estimated correctly, with the residual
increasing proportionally to the magnitude of the noise.

Next we show examples where there is a partial overlap between the source and target point
clouds.
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Figure 10: Noisy registration with o = 107!

Example 8: partial overlap In Figures 11 and 12, the point cloud My only overlaps with a
small part of M,. The noise levels are of ¢ = 1072 and ¢ = 10~! and give RESIDUAL values
of 10~* and 1072, respectively.

Example 9: no overlap In Figure 13, we push things even further and show that the regis-
tration may be possible even in cases where there is no overlap between the point clouds. Our
approach makes this possible because the points belong to a common algebraic variety. The
noise level is set to o = 1072 and RESIDUAL ~ 10~*.
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Figure 12: Noisy registration with ¢ = 10~ and partial overlap

Example 10: registration of dental scan We consider a computed tomography (CT) dental
scan of dimension 3 x 2048. The data is naturally noisy and we use the algebraic variety model
as an approximation. Nevertheless, we are able to estimate the transformation between two
identical versions of the scan with some level of accuracy. The degree which yields the best
result for the monomial features is d = 2 and the output of the solver gives RESIDUAL =~ 10~ 1.
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Figure 14: Registration for dental scan.

5 Conclusions

We present a framework which uses polynomial feature maps to approximate point clouds by
algebraic varieties and perform point cloud registration based on these approximations. The ap-
proach is a conceptually appealing way to perform denoising on algebraic varieties and numerical
results show high accuracy in the approximation for various noise levels, with a theoretical esti-
mate of the accuracy using Stein’s unbiased risk estimate. We identify the polynomial equations
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that define the algebraic variety from a set of noisy samples. The use of second-order Riemannian
optimization methods allows to achieve high accuracy.

For the registration problem, we show numerical evidence that we are able to overlap point
clouds which are approximated by algebraic varieties. We observe some robustness to noise
and the method performs even on challenging data such as dental scans. An advantage of our
approach over common algorithms for rigid registration is that we do not assume exact point
matching and our method achieves good results even in cases of partial overlap between the two
point clouds.

Our framework is so far best suited to low-dimensional data sets, because the dimension of
the feature space N ~ n?/d! increases rapidly with n and d; and the number of data points must
be large enough to satisfy A2. Several directions should be investigated to improve the scaling
of these methods. The dimension of the feature space could be reduced using low-dimensional
representations of the features, in the spirit of (Rahimi et al., 2007). To increase the degree—for
challenging surfaces—it would be important to use orthogonal polynomial basis to avoid the
ill-conditioning of the monomials. Instead of increasing the degree of the approximation, it may
be possible to divide the point cloud in patches and apply an approximation by an algebraic
variety of degree 2 on each patch.

The scalability of the algorithm with respect to the number of data points s may be improved
by viewing the cost functions in (3.4) and (4.4) as a finite sum over the data points and using
stochastic optimization methods (Kohler and Lucchi, 2017; Xu et al., 2020).

Acknowledgement The authors would like to thank Wenjuan Sun from the National Physical
Laboratory (UK) who suggested the point cloud alignment problem that partially motivated this
research and for providing the dental scan data.
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